30 research outputs found
LHS 1815b: The First Thick-disk Planet Detected by TESS
We report the first discovery of a thick-disk planet, LHS 1815b (TOI-704b, TIC 260004324), detected in the Transiting Exoplanet Survey Satellite (TESS) survey. LHS 1815b transits a bright (V = 12.19 mag, K = 7.99 mag) and quiet M dwarf located 29.87 ± 0.02 pc away with a mass of 0.502 ± 0.015 M o˙ and a radius of 0.501 ± 0.030 R o˙. We validate the planet by combining space- and ground-based photometry, spectroscopy, and imaging. The planet has a radius of 1.088 ± 0.064 R ⊕ with a 3σ mass upper limit of 8.7 M ⊕. We analyze the galactic kinematics and orbit of the host star LHS 1815 and find that it has a large probability (P thick/P thin = 6482) to be in the thick disk with a much higher expected maximal height (Z max = 1.8 kpc) above the Galactic plane compared with other TESS planet host stars. Future studies of the interior structure and atmospheric properties of planets in such systems using, for example, the upcoming James Webb Space Telescope, can investigate the differences in formation efficiency and evolution for planetary systems between different Galactic components (thick disks, thin disks, and halo)
TOI 564 b and TOI 905 b: Grazing and Fully Transiting Hot Jupiters Discovered by TESS
We report the discovery and confirmation of two new hot Jupiters discovered by the Transiting Exoplanet Survey Satellite (TESS): TOI 564 b and TOI 905 b. The transits of these two planets were initially observed by TESS with orbital periods of 1.651 and 3.739 days, respectively. We conducted follow-up observations of each system from the ground, including photometry in multiple filters, speckle interferometry, and radial velocity measurements. For TOI 564 b, our global fitting revealed a classical hot Jupiter with a mass of MJ and a radius of RJ. Also a classical hot Jupiter, TOI 905 b has a mass of MJ and radius of RJ. Both planets orbit Sun-like, moderately bright, mid-G dwarf stars with V ∼ 11. While TOI 905 b fully transits its star, we found that TOI 564 b has a very high transit impact parameter of, making it one of only ∼20 known systems to exhibit a grazing transit and one of the brightest host stars among them. Therefore, TOI 564 b is one of the most attractive systems to search for additional nontransiting, smaller planets by exploiting the sensitivity of grazing transits to small changes in inclination and transit duration over a timescale of several years
A hot mini-Neptune in the radius valley orbiting solar analogue HD 110113
We report the discovery of HD 110113 b (TESS object of interest-755.01), a transiting mini-Neptune exoplanet on a 2.5-d orbit around the solar-analogue HD 110113 (Teff = 5730 K). Using TESS photometry and High Accuracy Radial velocity Planet Searcher (HARPS) radial velocities gathered by the NCORES program, we find that HD 110113 b has a radius of 2.05 ± 0.12 R⊕ and a mass of 4.55 ± 0.62 M⊕. The resulting density of g cm-3 is significantly lower than would be expected from a pure-rock world; therefore HD 110113 b must be a mini-Neptune with a significant volatile atmosphere. The high incident flux places it within the so-called radius valley; however, HD 110113 b was able to hold on to a substantial (0.1-1 per cent) H-He atmosphere over its ∼4 Gyr lifetime. Through a novel simultaneous Gaussian process fit to multiple activity indicators, we were also able to fit for the strong stellar rotation signal with period 20.8 ± 1.2 d from the RVs and confirm an additional non-transiting planet, HD 110113 c, which has a mass of 10.5 ± 1.2 M⊕ and a period of d
TOI-1338: TESS' First Transiting Circumbinary Planet
We report the detection of the first circumbinary planet (CBP) found by Transiting Exoplanet Survey Satellite (TESS). The target, a known eclipsing binary, was observed in sectors 1 through 12 at 30 minute cadence and in sectors 4 through 12 at 2 minute cadence. It consists of two stars with masses of 1.1 M o˙ and 0.3 M o˙ on a slightly eccentric (0.16), 14.6 day orbit, producing prominent primary eclipses and shallow secondary eclipses. The planet has a radius of ∼6.9 R ⊕ and was observed to make three transits across the primary star of roughly equal depths (∼0.2%) but different durations-a common signature of transiting CBPs. Its orbit is nearly circular (e ≈ 0.09) with an orbital period of 95.2 days. The orbital planes of the binary and the planet are aligned to within ∼1°. To obtain a complete solution for the system, we combined the TESS photometry with existing ground-based radial-velocity observations in a numerical photometric-dynamical model. The system demonstrates the discovery potential of TESS for CBPs and provides further understanding of the formation and evolution of planets orbiting close binary stars
Pathology of tumors associated with pathogenic germline variants in 9 breast cancer susceptibility genes
IMPORTANCE Rare germline genetic variants in several genes are associated with increased breast cancer (BC) risk, but their precise contributions to different disease subtypes are unclear. This information is relevant to guidelines for gene panel testing and risk prediction.OBJECTIVE To characterize tumors associated with BC susceptibility genes in large-scale population- or hospital-based studies.DESIGN, SETTING, AND PARTICIPANTS The multicenter, international case-control analysis of the BRIDGES study included 42 680 patients and 46 387 control participants, comprising women aged 18 to 79 years who were sampled independently of family history from 38 studies. Studies were conducted between 1991 and 2016. Sequencing and analysis took place between 2016 and 2021.EXPOSURES Protein-truncating variants and likely pathogenic missense variants in ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C, RAD51D, and TP53.MAIN OUTCOMES AND MEASURES The intrinsic-like BC subtypes as defined by estrogen receptor, progesterone receptor, and ERBB2 (formerly known as HER2) status, and tumor grade; morphology; size; stage; lymph node involvement; subtype-specific odds ratios (ORs) for carrying protein-truncating variants and pathogenic missense variants in the 9 BC susceptibility genes.RESULTS The mean (SD) ages at interview (control participants) and diagnosis (cases) were 55.1 (11.9) and 55.8 (10.6) years, respectively; all participants were of European or East Asian ethnicity. There was substantial heterogeneity in the distribution of intrinsic subtypes by gene. RAD51C, RAD51D, and BARD1 variants were associated mainly with triple-negative disease (OR, 6.19 [95% CI, 3.17-12.12]; OR, 6.19 [95% CI, 2.99-12.79]; and OR, 10.05 [95% CI, 5.27-19.19], respectively). CHEK2 variants were associated with all subtypes (with ORs ranging from 2.21-3.17) except for triple-negative disease. For ATM variants, the association was strongest for the hormone receptor (HR)(+)ERBB2(-) high-grade subtype (OR, 4.99; 95% CI, 3.68-6.76). BRCA1 was associated with increased risk of all subtypes, but the ORs varied widely, being highest for triple-negative disease (OR, 55.32; 95% CI, 40.51-75.55). BRCA2 and PALB2 variants were also associated with triple-negative disease. TP53 variants were most strongly associated with HR(+)ERBB2(+) and HR(-)ERBB2(+) subtypes. Tumors occurring in pathogenic variant carriers were of higher grade. For most genes and subtypes, a decline in ORs was observed with increasing age. Together, the 9 genes were associated with 27.3% of all triple-negative tumors in women 40 years or younger.CONCLUSIONS AND RELEVANCE The results of this case-control study suggest that variants in the 9 BC risk genes differ substantially in their associated pathology but are generally associated with triple-negative and/or high-grade disease. Knowing the age and tumor subtype distributions associated with individual BC genes can potentially aid guidelines for gene panel testing, risk prediction, and variant classification and guide targeted screening strategies.Genome Instability and Cance
TOI-481 b and TOI-892 b: Two Long-period Hot Jupiters from the Transiting Exoplanet Survey Satellite
We present the discovery of two new 10 day period giant planets from the Transiting Exoplanet Survey Satellite mission, whose masses were precisely determined using a wide diversity of ground-based facilities. TOI-481 b and TOI-892 b have similar radii (0.99 0.01 and 1.07 0.02, respectively), and orbital periods (10.3311 days and 10.6266 days, respectively), but significantly different masses (1.53 0.03, respectively). Both planets orbit metal-rich stars ( = dex and = for TOI-481 and TOI-892, respectively) but at different evolutionary stages. TOI-481 is a = 1.14 0.02 = 1.66 0.02 G-type star (=K), that with an age of 6.7 Gyr, is in the turn-off point of the main sequence. TOI-892 on the other hand, is a F-type dwarf star (=K), which has a mass of = 1.28 0.03 and a radius of = 1.39 0.02. TOI-481 b and TOI-892 b join the scarcely populated region of transiting gas giants with orbital periods longer than 10 days, which is important to constrain theories of the formation and structure of hot Jupiters
Breast cancer risk genes: association analysis in more than 113,000 women
BACKGROUNDGenetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.METHODSWe used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.RESULTSProtein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.CONCLUSIONSThe results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.)Molecular tumour pathology - and tumour geneticsMTG1 - Moleculaire genetica en pathologie van borstkanke
Recommended from our members
ON THE MORPHOLOGY OF GRAIN BOUNDARY SEGREGATION: EFFECT OF GRAIN BOUNDARY STRUCTURE IN Al-Zn ALLOYS
Crystallographic characterization and magnetic properties of the MnIn2Ga2zSe4 alloy system
X-ray powder diffraction, differential thermal analysis DTA and magnetic susceptibility χ measurements were carried out on polycrystalline samples of the alloy system MnIn2(1−z)Ga2zSe4. Magnetization measurements at 2 K in magnetic fields up to 35 T were made on the MnIn2Se4 and MnGa2Se4 compounds. From the lattice parameter values, the limits of single-phase solid solution were estimated. At room temperature, the solid solutions extend over the range 0<z<0.30 for the δ-phase and from 0.75 to 1.0 for the η-phase. Values of TN, the Néel temperature, were obtained from the cusp in the χ versus T curves. Values of Curie–Weiss temperature θ were determined from the 1/χ versus T curves for the single-phase samples in each range. The magnetic results indicate that for 0<z<0.30, the Mn is randomly distributed over the cation sublattice, the phase having space group and the compound MnIn2Se4 (z=0) was found to be spin-glass, with Tg=2.75 K and θ=−94 K. The high z single phase η alloys show an ordered distribution of the Mn2+ ions on the cation sublattice and were antiferromagnetic showing ideal Curie–Weiss behavior, with TN=8 K and the Curie–Weiss temperature θ=−24 K