38 research outputs found
Multilayer gas cells for sub-Doppler spectroscopy
We have carried out theoretical research on ultra-high resolution
spectroscopy of atoms (or molecules) in the suggested cell with a series of
plane-parallel thin gas layers between spatially separated gas regions of this
cell for optical pumping and probing. It is shown the effective velocity
selection of optically pumped atoms because of their specific transit time and
collisional relaxation in such a cell, which lead to narrow sub-Doppler
resonances in absorption of the probe monochromatic light beam. Resolution of
this spectroscopic method is analyzed in cases of stationary and definite
nonstationary optical pumping of atoms by the broadband radiation versus
geometrical parameters of given cells and pumping intensity. The suggested
multilayer gas cell is the compact analog of many parallel atomic (molecular)
beams and may be used also as the basis of new compact optical frequency
standards of high accuracy.Comment: 12 pages, 4 figure
Dicke Coherent Narrowing in Two-Photon and Raman Spectroscopy of Thin Vapour Cells
The principle of coherent Dicke narrowing in a thin vapour cell, in which
sub-Doppler spectral lineshapes are observed under a normal irradiation for a
l/2 thickness, is generalized to two-photon spectroscopy. Only the sum of the
two wave vectors must be normal to the cell, making the two-photon scheme
highly versatile. A comparison is provided between the Dicke narrowing with
copropagating fields, and the residual Doppler-broadening occurring with
counterpropagating geometries. The experimental feasibility is discussed on the
basis of a first observation of a two-photon resonance in a 300 nm-thick Cs
cell. Extension to the Raman situation is finally considered
Sub-Doppler spectroscopy of Rb atoms in a sub-micron vapor cell in the presence of a magnetic field
We report the first use of an extremely thin vapor cell (thickness ~ 400 nm)
to study the magnetic-field dependence of laser-induced-fluorescence excitation
spectra of alkali atoms. This thin cell allows for sub-Doppler resolution
without the complexity of atomic beam or laser cooling techniques. This
technique is used to study the laser-induced-fluorescence excitation spectra of
Rb in a 50 G magnetic field. At this field strength the electronic angular
momentum J and nuclear angular momentum I are only partially decoupled. As a
result of the mixing of wavefunctions of different hyperfine states, we observe
a nonlinear Zeeman effect for each sublevel, a substantial modification of the
transition probabilities between different magnetic sublevels, and the
appearance of transitions that are strictly forbidden in the absence of the
magnetic field. For the case of right- and left- handed circularly polarized
laser excitation, the fluorescence spectra differs qualitatively. Well
pronounced magnetic field induced circular dichroism is observed. These
observations are explained with a standard approach that describes the partial
decoupling of I and J states
Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia
We report on our ongoing effort to measure the Boltzmann constant,
using the Doppler broadening technique on ammonia. This paper presents some of
the improvements made to the mid-infrared spectrometer including the use of a
phase-stabilized quantum cascade laser, a lineshape analysis based on a refined
physical model and an improved fitting program 2 increasing the confidence in
our estimates of the relevant molecular parameters, and a first evaluation of
the saturation parameter and its impact on the measurement of k B. A summary of
the systematic effects contributing to the measurement is given and the optimal
experimental conditions for mitigating those effects in order to reach a
competitive measurement of at a part per million accuracy level are
outlined
Coherent Doppler narrowing in a thin vapor cell: observation of the Dicke regime in the optical domain
Quantum Matter and Optic
Theoretical study of dark resonances in micro-metric thin cells
We investigate theoretically dark resonance spectroscopy for a dilute atomic
vapor confined in a thin (micro-metric) cell. We identify the physical
parameters characterizing the spectra and study their influence. We focus on a
Hanle-type situation, with an optical irradiation under normal incidence and
resonant with the atomic transition. The dark resonance spectrum is predicted
to combine broad wings with a sharp maximum at line-center, that can be singled
out when detecting a derivative of the dark resonance spectrum. This narrow
signal derivative, shown to broaden only sub-linearly with the cell length, is
a signature of the contribution of atoms slow enough to fly between the cell
windows in a time as long as the characteristic ground state optical pumping
time. We suggest that this dark resonance spectroscopy in micro-metric thin
cells could be a suitable tool for probing the effective velocity distribution
in the thin cell arising from the atomic desorption processes, and notably to
identify the limiting factors affecting desorption under a grazing incidence.Comment: 12 pages, 11 figures theoretical articl
Velocity-selective sublevel resonance of atoms with an array of current-carrying wires
Resonance transitions between the Zeeman sublevels of optically-polarized Rb
atoms traveling through a spatially periodic magnetic field are investigated in
a radio-frequency (rf) range of sub-MHz. The atomic motion induces the
resonance when the Zeeman splitting is equal to the frequency at which the
moving atoms feel the magnetic field oscillating. Additional temporal
oscillation of the spatially periodic field splits a motion-induced resonance
peak into two by an amount of this oscillation frequency. At higher oscillation
frequencies, it is more suitable to consider that the resonance is mainly
driven by the temporal field oscillation, with its velocity-dependence or
Doppler shift caused by the atomic motion through the periodic field. A
theoretical description of motion-induced resonance is also given, with
emphasis on the translational energy change associated with the internal
transition.Comment: 7 pages, 3 figures, final versio
The IMERAPlus Joint Research Project For Determinations Of The Boltzmann Constant
Abstract. To provide new determinations of the Boltzmann constant, k, which has been asked for by the International Committee for Weights and Measures concerning preparative steps towards new definitions of the kilogram, the ampere, the kelvin and the mole, an iMERAPlus joint research project has coordinated the European activities in this field. In this major European research project the Boltzmann constant has been determined by various methods to support the new definition of the kelvin. The final results of the project are reviewed in this paper. Determinations of the Boltzmann constant k were achieved within the project by all three envisaged methods: acoustic gas thermometry, Doppler broadening technique, and dielectric constant gas thermometry. The results were exploited by the interdisciplinary Committee on Data for Science and Technology (CODATA) in their 2010 adjustment of recommended values for fundamental constants. As a result, the CODATA group recommended a value for k with a relative standard uncertainty about a factor of two smaller than the previous u(k)/k of 1.7Ă10 â6
Detection of slow atoms in laser spectroscopy of a thin vapor film
We report on high-resolution single-light-beam transmission spectroscopy through an ultra
thin vapor cell (thickness 10â). In addition to the expected
Doppler-broadened absorption, a novel sub-Doppler structure is observed under normal
incidence irradiation. This structure originates from the optical response of atoms with very
small velocity components perpendicular to the cell walls, and is connected with the
transient atom excitation regime during the wall-to-wall time of flight. In experiments
performed in Cs vapor, the slow mechanism of optical pumping leads, for weak light intensities
(10â) and a cell, to a velocity selection
equivalent to an effective 1D temperature in the sub-mK range