75 research outputs found

    Through Engineering 4.0 the Safe Operating Block for Patients and Medical Staff

    Get PDF
    The Paper deals with the management of the operating block in its many activities. By a new approach and with innovative machinery specific several problems were thus studied and overcome, such as the control of hospital infections, the operations of washing and sterilization of surgical instruments, the planning of interventions, the tracking of drugs and medical devices entering the operating block, the management of stocks, the bed management, the monitoring of environmental parameters for patient comfort and safety, the monitoring of machines and the interlocking of doors, etc. Furthermore, it is proposed a wide use of the analytical tools to support decision making, extended to the most modern Cyber-Physical Systems and Digital Twin, alongside Machine Learning and Artificial Intelligence algorithms. Concluding with the new services that can be offered following the digital transformation 4.0 process of the operating block. Using the tools made available by the most advanced Engineering, an operating block was redesigned, safer for patients and medical staff and more efficient from a conduction point of view. This is done using an administration model that was first conceptualized, designed and then implemented adopting what is made available by Industry 4.0, as well as a series of Management Engineering methodologies aimed at an optimized government of complex systems. Through the data collected by appropriate sensors and translated by the software into usable information, there is an optimal use of the available resources, furthermore, the activities for which improvements can be made with the benefit of patients and structures are identified

    Engineering Solutions 4.0 in the fight against the spread of Covid 19 A new Methodology including processes, procedures and devices

    Get PDF
    Thanks to the principles and technologies made available by Industry 4.0, the authors conceptualized and modeled a new strategy, capable of making an effective contribution to the problem of limiting contagion from Covid19 today, and tomorrow from any possible other type virus, bacteria or pathogen agent introduced by subjects who, although unaware of being vectors, develop the infection only after their access to the places of stay (Hotel, office, Infrastructure, etc.) where they go to reside. The key point of the strategy is a 4.0 thermoscanner, created by the authors, which is positioned in appropriately chosen locations of the settlement and an innovative method of disinfection of the same implemented by means of UV-C rays and Ozone in the gaseous state, produced by a machine, also conceptualized and developed by the authors, capable of reproducing the Chapman Cycle with the associated advantages. Therefore, it is operated an absolute disinfection based on a reversible cycle Oxygen-Ozone-Oxygen, with a prompt re-habitability of the treated rooms, with minimal treatment costs and without the use of expensive and unhealthy chemicals or wet water vapor (incompatible with paper and electronics). This technology was described in the paper “Sanitizing of Confined Spaces Using Gaseous Ozone Produced by 4.0 Machines” presented by the authors to the WCE 2021 IAENG Congress and awarded with the “Best Paper Award of the 2021 International Conference of Systems Biology and Bioengineering”. In the presence of a Person with a fever, the thermoscanner automatically launches an alert to the site Safety officers, who confine him to an isolated place and make the Health Institutions intervene and take it over

    Temperature variations in the low stratosphere (50–200 hPa) monitored by means of the atmospheric muon flux

    Get PDF
    The dependence of the muon flux on the atmospheric parameters (pressure and temperature) is a well-known effect since long time ago. We have correlated the muon flux recorded by the electromagnetic detector of EAS-TOP with the atmospheric temperature (up to few hPa level) monitored by the radio-soundings of the ITAV—Aeronautica Militare at Pratica di Mare (Rome). A significant effect has been observed when the muon flux is correlated with the atmospheric temperature in the region 50–200 hPa, as expected, since this is the region where the mesons of first generation are produced. The technique has been applied to two short periods of strong temperature variations in the low stratosphere, showing that the temporal pattern of the temperature is fairly well reproduced by the variations of the muon flux. The main results of this analysis are presented

    Quantitative Organization of GABAergic Synapses in the Molecular Layer of the Mouse Cerebellar Cortex

    Get PDF
    In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess the ratio of GABAergic synapses on Purkinje cell dendrites versus those on interneurons. We generated a mouse model in which the GABAA receptor α1 subunit (GABAARα1) was selectively removed from Purkinje cells using the Cre/loxP system. Deletion of the α1 subunit resulted in a complete loss of GABAAR aggregates from Purkinje cells, allowing us to determine the density of GABAAR clusters in interneurons. In a complementary approach, we determined the density of GABA synapses impinging on Purkinje cells using α-dystroglycan as a specific marker of inhibitory postsynaptic sites. Combining these inverse approaches, we found that synapses received by interneurons represent approximately 40% of all GABAergic synapses in the molecular layer. Notably, this proportion was stable during postnatal development, indicating synchronized synaptogenesis. Based on the pure quantity of GABAergic synapses onto interneurons, we propose that mutual inhibition must play an important, yet largely neglected, computational role in the cerebellar cortex

    Suono e Spettacolo. Athanasius Kircher, un percorso nelle Immagini sonore.

    Get PDF
    The Society of Jesus made great propaganda efforts throughout the seventeenth century and chose the images and the play as a privileged means to communicate and persuade. Athanasius Kircher, a key figure of the seventeenth century, he decided to dominate the wild nature of sound through Phonurgia Nova, which includes a gallery of powerful symbolic images for Baroque aesthetics. The essay, through the grant of the images from the Library of the Department of Mathematics "Guido Castelnuovo" Sapienza University of Rome, aims to understand, through the pictures offered by Kircher, the sound phenomenon and the spectacle that this produces. In Phonurgia Nova a process of dramatization sound effects takes place, often through machines and "visions" applied to the theatrical reality, as experimental and astonishing environment beloved in baroque. Kircher illustrates the sound through explanatory figures, so to dominate the sound through the eyes. Sound is seen, admired and represented: its spectacle not only takes place through the implementation of sound machines or the "wonders" applied to the theater, but even through images, creating create a sense of wonder in in the erudite person of the seventeenth century

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar purkinje cells

    Get PDF
    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABA(A) receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABA(A) receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABA(A) receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABA(A) receptors and is abolished by preventing CaMKII phosphorylation of GABA(A) receptors. Our results reveal a novel GABA(A) receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum

    Fighting Hospital Infections with Engineering 4.0

    Get PDF
    In the repeated interventions carried out by the authors in the healthcare sector [1-4] (hospitals, outpatient clinics and clinics), including assistance facilities (residences for the elderly and outpatient medical offices) the problem of so-called hospital or nosocomial infections has always been reported to the team by the medical and nursing staff. Starting from an age-old experience of sanitization of confined environments, achieved by the authors by using a 4.0 machine, for the production of gaseous ozone and UVC rays [8], it was required to the team to extend the benefits achieved to the healthcare sector. This goal was possible by generating a dedicated approach, for an effective action to combat this serious problem of global significance. The machine mentioned was conceptualized, designed and developed by the authors by specific Engineering 4.0 methodologies, meaning with this term the use of all Engineering technologies, techniques, software, tools, and devices characterizing the fourth industrial revolution
    corecore