1,369 research outputs found

    Bad News for Disabled People: How the Newspapers are Reporting Disability

    Get PDF

    Bad News for Disabled People: How the Newspapers are Reporting Disability

    Get PDF

    Mapping the cellular electrophysiology of rat sympathetic preganglionic neurones to their roles in cardiorespiratory reflex integration:A whole cell recording study in situ

    Get PDF
    Sympathetic preganglionic neurones (SPNs) convey sympathetic activity flowing from the CNS to the periphery to reach the target organs. Although previous in vivo and in vitro cell recording studies have explored their electrophysiological characteristics, it has not been possible to relate these characteristics to their roles in cardiorespiratory reflex integration. We used the working heart–brainstem preparation to make whole cell patch clamp recordings from T3–4 SPNs (n = 98). These SPNs were classified by their distinct responses to activation of the peripheral chemoreflex, diving response and arterial baroreflex, allowing the discrimination of muscle vasoconstrictor-like (MVC(like), 39%) from cutaneous vasoconstrictor-like (CVC(like), 28%) SPNs. The MVC(like) SPNs have higher baseline firing frequencies (2.52 ± 0.33 Hz vs. CVC(like) 1.34 ± 0.17 Hz, P = 0.007). The CVC(like) have longer after-hyperpolarisations (314 ± 36 ms vs. MVC(like) 191 ± 13 ms, P < 0.001) and lower input resistance (346 ± 49  MΩ vs. MVC(like) 496 ± 41 MΩ, P < 0.05). MVC(like) firing was respiratory-modulated with peak discharge in the late inspiratory/early expiratory phase and this activity was generated by both a tonic and respiratory-modulated barrage of synaptic events that were blocked by intrathecal kynurenate. In contrast, the activity of CVC(like) SPNs was underpinned by rhythmical membrane potential oscillations suggestive of gap junctional coupling. Thus, we have related the intrinsic electrophysiological properties of two classes of SPNs in situ to their roles in cardiorespiratory reflex integration and have shown that they deploy different cellular mechanisms that are likely to influence how they integrate and shape the distinctive sympathetic outputs

    Managing the social impacts of austerity Britain: the cultural politics of neo-liberal 'nudging'

    Get PDF
    Elements of this book assess the media and the part it plays in the process of maintaining the status quo and contra-narratives particularly in drama

    Modelling the vascular response to sympathetic postganglionic nerve activity

    Get PDF
    AbstractThis paper explores the influence of burst properties of the sympathetic nervous system on arterial contractility. Specifically, a mathematical model is constructed of the pathway from action potential generation in a sympathetic postganglionic neurone to contraction of an arterial smooth muscle cell. The differential equation model is a synthesis of models of the individual physiological processes, and is shown to be consistent with physiological data.The model is found to be unresponsive to tonic (regular) stimulation at typical frequencies recorded in sympathetic efferents. However, when stimulated at the same average frequency, but with repetitive respiratory-modulated burst patterns, it produces marked contractions. Moreover, the contractile force produced is found to be highly dependent on the number of spikes in each burst. In particular, when the model is driven by preganglionic spike trains recorded from wild-type and spontaneously hypertensive rats (which have increased spiking during each burst) the contractile force was found to be 10-fold greater in the hypertensive case. An explanation is provided in terms of the summative increased release of noradrenaline. Furthermore, the results suggest the marked effect that hypertensive spike trains had on smooth muscle cell tone can provide a significant contribution to the pathology of hypertension

    Quantifying the fate of agricultural nitrogen in an unconfined aquifer: Stream-based observations at three measurement scales

    Get PDF
    We compared three stream-based sampling methods to study the fate of nitrate in groundwater in a coastal plain watershed: point measurements beneath the streambed, seepage blankets (novel seepage-meter design), and reach mass-balance. The methods gave similar mean groundwater seepage rates into the stream (0.3–0.6 m/d) during two 3–4 day field campaigns despite an order of magnitude difference in stream discharge between the campaigns. At low flow, estimates of flowweighted mean nitrate concentrations in groundwater discharge ([NO-3 ]FWM) and nitrate flux from groundwater to the stream decreased with increasing degree of channel influence and measurement scale, i.e., [NO-3 ]FWM was 654, 561, and 451 mM for point, blanket, and reach mass-balance sampling, respectively. At high flow the trend was reversed, likely because reach mass-balance captured inputs from shallow transient high-nitrate flow paths while point and blanket measurements did not. Point sampling may be better suited to estimating aquifer discharge of nitrate, while reach mass-balance reflects full nitrate inputs into the channel (which at high flow may be more than aquifer discharge due to transient flow paths, and at low flow may be less than aquifer discharge due to channel-based nitrate removal). Modeling dissolved N2 from streambed samples suggested (1) about half of groundwater nitrate was denitrified prior to discharge from the aquifer, and (2) both extent of denitrification and initial nitrate concentration in groundwater (700–1300 mM) were related to land use, suggesting these forms of streambed sampling for groundwater can reveal watershed spatial relations relevant to nitrate contamination and fate in the aquifer

    Breakdown of Scaling in the Nonequilibrium Critical Dynamics of the Two-Dimensional XY Model

    Full text link
    The approach to equilibrium, from a nonequilibrium initial state, in a system at its critical point is usually described by a scaling theory with a single growing length scale, ξ(t)t1/z\xi(t) \sim t^{1/z}, where z is the dynamic exponent that governs the equilibrium dynamics. We show that, for the 2D XY model, the rate of approach to equilibrium depends on the initial condition. In particular, ξ(t)t1/2\xi(t) \sim t^{1/2} if no free vortices are present in the initial state, while ξ(t)(t/lnt)1/2\xi(t) \sim (t/\ln t)^{1/2} if free vortices are present.Comment: 4 pages, 3 figure

    Response of CO<sub>2</sub> and CH<sub>4</sub> emissions from Arctic tundra soils to a multifactorial manipulation of water table, temperature and thaw depth

    Get PDF
    Significant uncertainties persist concerning how Arctic soil tundra carbon emission responds to environmental changes. In this study, 24 cores were sampled from drier (high centre polygons and rims) and wetter (low centre polygons and troughs) permafrost tundra ecosystems. We examined how soil CO2 and CH4 fluxes responded to laboratory-based manipulations of soil temperature (and associated thaw depth) and water table depth, representing current and projected conditions in the Arctic. Similar soil CO2 respiration rates occurred in both the drier and the wetter sites, suggesting that a significant proportion of soil CO2 emission occurs via anaerobic respiration under water-saturated conditions in these Arctic tundra ecosystems. In the absence of vegetation, soil CO2 respiration rates decreased sharply within the first 7 weeks of the experiment, while CH4 emissions remained stable for the entire 26 weeks of the experiment. These patterns suggest that soil CO2 emission is more related to plant input than CH4 production and emission. The stable and substantial CH4 emission observed over the entire course of the experiment suggests that temperature limitations, rather than labile carbon limitations, play a predominant role in CH4 production in deeper soil layers. This is likely due to the presence of a substantial source of labile carbon in these carbon-rich soils. The small soil temperature difference (a median difference of 1 ◦C) and a more substantial thaw depth difference (a median difference of 6 cm) between the high and low temperature treatments resulted in a non-significant difference between soil CO2 and CH4 emissions. Although hydrology continued to be the primary factor influencing CH4 emissions, these emissions remained low in the drier ecosystem, even with a water table at the surface. This result suggests the potential absence of a methanogenic microbial community in high-centre polygon and rim ecosystems. Overall, our results suggest that the temperature increases reported for these Arctic regions are not responsible for increases in carbon losses. Instead, it is the changes in hydrology that exert significant control over soil CO2 and CH4 emissions

    Quantifying sympathetic neuro-haemodynamic transduction at rest in humans:Insights into sex, ageing and blood pressure control

    Get PDF
    KEY POINTS: We have developed a simple analytical method for quantifying the transduction of sympathetic activity into vascular tone. This method demonstrates that as women age, the transfer of sympathetic nerve activity into vascular tone is increased, so that for a given level of sympathetic activity there is more vasoconstriction. In men, this measure decreases with age. Test–re‐test analysis demonstrated that the new method is a reliable estimate of sympathetic transduction. We conclude that increased sympathetic vascular coupling contributes to the age‐related increase in blood pressure that occurs in women only. This measure is a reliable estimate of sympathetic transduction in populations with high sympathetic nerve activity. Thus, it will provide information regarding whether treatment targeting the sympathetic nervous system, which interrupts the transfer of sympathetic nerve activity into vascular tone, will be effective in reducing blood pressure in hypertensive patients. This may provide insight into which populations will respond to certain types of anti‐hypertensive medication. ABSTRACT: Sex and age differences in the sympathetic control of resting blood pressure (BP) may be due to differences in the transduction of sympathetic nerve activity (SNA) into vascular tone. Current methods for dynamically quantifying transduction focus on the relationship between SNA and vasoconstriction during a pressor stimulus, which increases BP and may be contra‐indicated in patients. We describe a simple analytical method for quantifying transduction under resting conditions. We performed linear regression analysis of binned muscle SNA burst areas against diastolic BP (DBP). We assessed whether the slope of this relationship reflects the transduction of SNA into DBP. To evaluate this, we investigated whether this measure captures differences in transduction in different populations. Specifically, we (1) quantified transduction in young men (YM), young women (YW), older men (OM) and postmenopausal women (PMW); and (2) measured changes in transduction during β‐blockade using propranolol in YW, YM and PMW. YM had a greater transduction vs. OM (0.10 ± 0.01 mmHg (% s)(−1), n = 23 vs. 0.06 ± 0.01 mmHg (% s)(−1), n = 18; P = 0.003). Transduction was lowest in YW (0.02 ± 0.01 mmHg (% s)(−1), n = 23) and increased during β‐blockade (0.11 ± 0.01 mmHg (% s)(−1); P < 0.001). Transduction in PMW (0.07 ± 0.01 mmHg (% s)(−1), n = 23) was greater compared to YW (P = 0.001), and was not altered during β‐blockade (0.06 ± 0.01 mmHg (% s)(−1); P = 0.98). Importantly, transduction increased in women with age, but decreased in men. Transduction in women intersected that in men at 55 ± 1.5 years. This measure of transduction captures age‐ and sex‐differences in the sympathetic regulation of DBP and may be valuable in quantifying transduction in disease. In particular, this measure may help target treatment strategies in specific hypertensive subpopulations
    corecore