102 research outputs found

    Expression of factor V by resident macrophages boosts host defense in the peritoneal cavity

    Get PDF
    Macrophages resident in different organs express distinct genes, but understanding how this diversity fits into tissue-specific features is limited. Here, we show that selective expression of coagulation factor V (FV) by resident peritoneal macrophages in mice promotes bacterial clearance in the peritoneal cavity and serves to facilitate the well-known but poorly understood macrophage disappearance reaction. Intravital imaging revealed that resident macrophages were nonadherent in peritoneal fluid during homeostasis. Bacterial entry into the peritoneum acutely induced macrophage adherence and associated bacterial phagocytosis. However, optimal control of bacterial expansion in the peritoneum also required expression of FV by the macrophages to form local clots that effectively brought macrophages and bacteria in proximity and out of the fluid phase. Thus, acute cellular adhesion and resident macrophage-induced coagulation operate independently and cooperatively to meet the challenges of a unique, open tissue environment. These events collectively account for the macrophage disappearance reaction in the peritoneal cavity

    L-plastin is essential for alveolar macrophage production and control of pulmonary pneumococcal infection

    Get PDF
    We report that mice deficient for the hematopoietic-specific, actin-bundling protein L-plastin (LPL) succumb rapidly to intratracheal pneumococcal infection. The increased susceptibility of LPL(−/−) mice to pulmonary pneumococcal challenge correlated with reduced numbers of alveolar macrophages, consistent with a critical role for this cell type in the immediate response to pneumococcal infection. LPL(−/−) mice demonstrated a very early clearance defect, with an almost 10-fold-higher bacterial burden in the bronchoalveolar lavage fluid 3 h following infection. Clearance of pneumococci from the alveolar space in LPL(−/−) mice was defective compared to that in Rag1(−/−) mice, which lack all B and T lymphocytes, indicating that innate immunity is defective in LPL(−/−) mice. We did not identify defects in neutrophil or monocyte recruitment or in the production of inflammatory cytokines or chemokines that would explain the early clearance defect. However, efficient alveolar macrophage regeneration following irradiation required LPL. We thus identify LPL as being key to alveolar macrophage development and essential to an effective antipneumococcal response. Further analysis of LPL(−/−) mice will illuminate critical regulators of the generation of alveolar macrophages and, thus, effective pulmonary innate immunity

    Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation

    Get PDF
    T(H)1 and T(H)17 cells mediate neuroinflammation in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Pathogenic T(H) cells in EAE must produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). T(H) cell pathogenicity in EAE is also regulated by cell-intrinsic production of the immunosuppressive cytokine interleukin 10 (IL-10). Here, we demonstrate that mice deficient for the basic helix-loop-helix (bHLH) transcription factor Bhlhe40 (Bhlhe40(−/−)) are resistant to the induction of EAE. Bhlhe40 is required in vivo in a T cell-intrinsic manner, where it positively regulates the production of GM-CSF and negatively regulates the production of IL-10. In vitro, GM-CSF secretion is selectively abrogated in polarized Bhlhe40(−/−) T(H)1 and T(H)17 cells, and these cells show increased production of IL-10. Blockade of IL-10 receptor in Bhlhe40(−/−) mice renders them susceptible to EAE. These findings identify Bhlhe40 as a critical regulator of autoreactive T cell pathogenicity

    Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12

    Get PDF
    CD8alpha(+) and CD103(+) dendritic cells (DCs) play a central role in the development of type 1 immune responses. However, their role in type 2 immunity remains unclear. We examined this issue using Batf3(-/-) mice, in which both of these DC subsets are missing. We found that Th2 cell responses, and related events such as eosinophilia, alternative macrophage activation, and immunoglobulin class switching to IgG1, were enhanced in Batf3(-/-) mice responding to helminth parasites. This had beneficial or detrimental consequences depending on the context. For example, Batf3 deficiency converted a normally chronic intestinal infection with Heligmosomoides polygyrus into an infection that was rapidly controlled. However, liver fibrosis, an IL-13-mediated pathological consequence of wound healing in chronic schistosomiasis, was exacerbated in Batf3(-/-) mice infected with Schistosoma mansoni. Mechanistically, steady-state production of IL-12 by migratory CD103(+) DCs, independent of signals from commensals or TLR-initiated events, was necessary and sufficient to exert the suppressive effects on Th2 response development. These findings identify a previously unrecognized role for migratory CD103(+) DCs in antagonizing type 2 immune responses

    Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells

    Get PDF
    Although CD103-expressing dendritic cells (DCs) are widely present in nonlymphoid tissues, the transcription factors controlling their development and their relationship to other DC subsets remain unclear. Mice lacking the transcription factor Batf3 have a defect in the development of CD8α(+) conventional DCs (cDCs) within lymphoid tissues. We demonstrate that Batf3(−/−) mice also lack CD103(+)CD11b(−) DCs in the lung, intestine, mesenteric lymph nodes (MLNs), dermis, and skin-draining lymph nodes. Notably, Batf3(−/−) mice displayed reduced priming of CD8 T cells after pulmonary Sendai virus infection, with increased pulmonary inflammation. In the MLNs and intestine, Batf3 deficiency resulted in the specific lack of CD103(+)CD11b(−) DCs, with the population of CD103(+)CD11b(+) DCs remaining intact. Batf3(−/−) mice showed no evidence of spontaneous gastrointestinal inflammation and had a normal contact hypersensitivity (CHS) response, despite previous suggestions that CD103(+) DCs were required for immune homeostasis in the gut and CHS. The relationship between CD8α(+) cDCs and nonlymphoid CD103(+) DCs implied by their shared dependence on Batf3 was further supported by similar patterns of gene expression and their shared developmental dependence on the transcription factor Irf8. These data provide evidence for a developmental relationship between lymphoid organ–resident CD8α(+) cDCs and nonlymphoid CD103(+) DCs

    IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation

    Get PDF
    The features that define autoreactive T helper (Th) cell pathogenicity remain obscure. We have previously shown that Th cells require the transcription factor Bhlhe40 to mediate experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Here, using Bhlhe40 reporter mice and analyzing both polyclonal and TCR transgenic Th cells, we found that Bhlhe40 expression was heterogeneous after EAE induction, with Bhlhe40-expressing cells displaying marked production of IFN-γ, IL-17A, and granulocyte-macrophage colony-stimulating factor. In adoptive transfer EAE models, Bhlhe40-deficient Th1 and Th17 cells were both nonencephalitogenic. Pertussis toxin (PTX), a classical co-adjuvant for actively induced EAE, promoted IL-1β production by myeloid cells in the draining lymph node and served as a strong stimulus for Bhlhe40 expression in Th cells. Furthermore, PTX co-adjuvanticity was Bhlhe40 dependent. IL-1β induced Bhlhe40 expression in polarized Th17 cells, and Bhlhe40-expressing cells exhibited an encephalitogenic transcriptional signature. In vivo, IL-1R signaling was required for full Bhlhe40 expression by Th cells after immunization. Overall, we demonstrate that Bhlhe40 expression identifies encephalitogenic Th cells and defines a PTX–IL-1–Bhlhe40 pathway active in EAE

    Single-cell RNA-seq analysis of human CSF microglia and myeloid cells in neuroinflammation

    Get PDF
    OBJECTIVE: To identify and characterize myeloid cell populations within the CSF of patients with MS and anti-myelin oligodendrocyte glycoprotein (MOG) disorder by high-resolution single-cell gene expression analysis. METHODS: Single-cell RNA sequencing (scRNA-seq) was used to profile individual cells of CSF and blood from 2 subjects with relapsing-remitting MS (RRMS) and one with anti-MOG disorder. Publicly available scRNA-seq data from the blood and CSF of 2 subjects with HIV were also analyzed. An informatics pipeline was used to cluster cell populations by transcriptomic profiling. Based on gene expression by CSF myeloid cells, a flow cytometry panel was devised to examine myeloid cell populations from the CSF of 11 additional subjects, including individuals with RRMS, anti-MOG disorder, and control subjects without inflammatory demyelination. RESULTS: Common myeloid populations were identified within the CSF of subjects with RRMS, anti-MOG disorder, and HIV. These included monocytes, conventional and plasmacytoid dendritic cells, and cells with a transcriptomic signature matching microglia. Microglia could be discriminated from other myeloid cell populations in the CSF by flow cytometry. CONCLUSIONS: High-resolution single-cell gene expression analysis clearly distinguishes distinct myeloid cell types present within the CSF of subjects with neuroinflammation. A population of microglia exists within the human CSF, which is detectable by surface protein expression. The function of these cells during immunity and disease requires further investigation

    Batf3-Dependent CD11blow/− Peripheral Dendritic Cells Are GM-CSF-Independent and Are Not Required for Th Cell Priming after Subcutaneous Immunization

    Get PDF
    Dendritic cells (DCs) subsets differ in precursor cell of origin, functional properties, requirements for growth factors, and dependence on transcription factors. Lymphoid-tissue resident CD8α+ conventional DCs (cDCs) and CD11blow/−CD103+ non-lymphoid DCs are developmentally related, each being dependent on FMS-like tyrosine kinase 3 ligand (Flt3L), and requiring the transcription factors Batf3, Irf8, and Id2 for development. It was recently suggested that granulocyte/macrophage colony stimulating factor (GM-CSF) was required for the development of dermal CD11blow/−Langerin+CD103+ DCs, and that this dermal DC subset was required for priming autoreactive T cells in experimental autoimmune encephalitis (EAE). Here, we compared development of peripheral tissue DCs and susceptibility to EAE in GM-CSF receptor deficient (Csf2rb−/−) and Batf3−/− mice. We find that Batf3-dependent dermal CD11blow/−Langerin+ DCs do develop in Csf2rb−/− mice, but that they express reduced, but not absent, levels of CD103. Further, Batf3−/− mice lacking all peripheral CD11blow/− DCs show robust Th cell priming after subcutaneous immunization and are susceptible to EAE. Our results suggest that defective T effector priming and resistance to EAE exhibited by Csf2rb−/− mice does not result from the absence of dermal CD11blow/−Langerin+CD103+ DCs
    corecore