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L-Plastin Is Essential for Alveolar Macrophage Production and
Control of Pulmonary Pneumococcal Infection

Lauren E. Deady,a Elizabeth M. Todd,a Chris G. Davis,a Julie Y. Zhou,a Nermina Topcagic,a Brian T. Edelson,b Thomas W. Ferkol,a,c

Megan A. Cooper,a,b Jared T. Muenzer,a* Sharon Celeste Morleya,b

Department of Pediatrics,a Department of Pathology and Immunology,b and Department of Cell Biology and Physiology,c Washington University School of Medicine,
Saint Louis, Missouri, USA

We report that mice deficient for the hematopoietic-specific, actin-bundling protein L-plastin (LPL) succumb rapidly to intratra-
cheal pneumococcal infection. The increased susceptibility of LPL�/� mice to pulmonary pneumococcal challenge correlated
with reduced numbers of alveolar macrophages, consistent with a critical role for this cell type in the immediate response to
pneumococcal infection. LPL�/� mice demonstrated a very early clearance defect, with an almost 10-fold-higher bacterial bur-
den in the bronchoalveolar lavage fluid 3 h following infection. Clearance of pneumococci from the alveolar space in LPL�/�

mice was defective compared to that in Rag1�/� mice, which lack all B and T lymphocytes, indicating that innate immunity is
defective in LPL�/� mice. We did not identify defects in neutrophil or monocyte recruitment or in the production of inflamma-
tory cytokines or chemokines that would explain the early clearance defect. However, efficient alveolar macrophage regeneration
following irradiation required LPL. We thus identify LPL as being key to alveolar macrophage development and essential to an
effective antipneumococcal response. Further analysis of LPL�/� mice will illuminate critical regulators of the generation of al-
veolar macrophages and, thus, effective pulmonary innate immunity.

Pneumococcal pneumonia remains a major cause of morbidity
and mortality worldwide (1). Identification of regulators of

pulmonary antipneumococcal immunity is critical to the design
of new therapies to modulate the outcome of this disease. Initially,
alveolar macrophages and alveolar epithelial cells respond to pul-
monary pneumococcal invasion (2, 3) by triggering the produc-
tion of inflammatory cytokines, such as interleukin-1 (IL-1) and
tumor necrosis factor alpha (TNF-�). Alveolar macrophages also
eliminate pathogens by engulfing and then killing pneumococci.
Alveolar macrophages can effectively clear small numbers of
pneumococci and prevent pneumonia. If, however, pneumococci
are not cleared within 2 to 4 h, neutrophils and then monocytes
are recruited (3). Neutrophils contain the dissemination of pneu-
mococci through phagocytic killing, while peripheral monocytes
clear still-viable pneumococci and dead neutrophils, controlling
infection and mitigating inflammation.

Alveolar macrophages thus appear to be critical for early re-
sponses leading to good outcomes in pneumococcal pneumonia.
The depletion of alveolar macrophages in mice using clodronate
hindered pneumococcal clearance and diminished survival (4, 5).
The influenza virus shifts the activation state of alveolar macro-
phages, which could contribute to increased postinfluenza suscep-
tibility to pneumococcal pneumonia (6). Morphine and alcohol
impair alveolar macrophages, which could explain the increased
susceptibility of intravenous drug and alcohol users to pneumonia
(4, 7). Elucidation of the molecular mechanisms that regulate al-
veolar macrophages is therefore crucial to an understanding of
host-pathogen interactions during the critical first few hours of
pneumococcal lung invasion.

L-Plastin (LPL) is an actin-bundling protein specifically ex-
pressed in hematopoietic cells (8, 9). LPL colocalizes with poly-
merized actin in macrophage podosomes, membrane ruffles, and
phagocytic cups (10, 11). The critical roles of LPL in neutrophil
integrin signaling, T and B lymphocyte motility, and T cell activa-
tion have been established (12–19), but a requirement for LPL in

macrophage function has not. Here we show that LPL�/� mice
challenged intratracheally (i.t.) with pneumococci were defective
in early pathogen clearance and succumbed rapidly to infection
despite directed antimicrobial therapy. Defective pathogen clear-
ance correlated with reduced numbers of alveolar macrophages in
the bronchoalveolar space, and regeneration of alveolar macro-
phages from bone marrow derived from LPL�/� mice was im-
paired. LPL is thus essential for the normal localization of alveolar
macrophages in the bronchoalveolar space and, by extension, for
the early clearance of pneumococci.

MATERIALS AND METHODS
Mice. LPL�/� mice backcrossed to a C57BL/6 background were described
previously (12, 14). Cohoused control wild-type (WT) mice were age
matched (8 to 12 weeks) and gender matched. Unless otherwise specified,
all mice were male. All experiments were approved by the Washington
University Institutional Animal Care and Use Committee.

Antibodies and reagents. Commercial antibodies to the following
murine antigens were used: CD11b-fluorescein isothiocyanate (FITC),
CD11c-phycoerythrin (PE), T cell receptor � (TCR�)-FITC, CD3-PE,
CD8-peridinin chlorophyll protein (PerCP)/Cy5.5, CD4-allophycocya-
nin (APC), Ly6C-APC (eBioscience); CD115-biotin, CD103-biotin,
TCR�/�-biotin, B220-PE, streptavidin-APC/Cy7, CD45.2-PE/Cy7,

Received 26 September 2013 Returned for modification 11 November 2013
Accepted 15 February 2014

Published ahead of print 4 March 2014

Editor: A. Camilli

Address correspondence to Sharon Celeste Morley, morley_c@kids.wustl.edu.

* Present address: Jared T. Muenzer, Department of Child Health, University of
Arizona, Phoenix, Arizona, USA.

J.T.M. and S.C.M. contributed equally to the work.

Copyright © 2014, American Society for Microbiology. All Rights Reserved.

doi:10.1128/IAI.01199-13

1982 iai.asm.org Infection and Immunity p. 1982–1993 May 2014 Volume 82 Number 5

 on June 2, 2014 by W
ashington U

niversity in S
t. Louis

http://iai.asm
.org/

D
ow

nloaded from
 

http://dx.doi.org/10.1128/IAI.01199-13
http://iai.asm.org
http://iai.asm.org/


CD45.1-PE/Cy7, I-Ak–APC, Ly6G-Pacific Blue, CD31-PE/Cy7, F4/80-
PerCP/Cy5.5, annexin V-APC, gamma interferon (IFN-�)-PE, Dx5-Pa-
cific Blue (BioLegend), and NK1.1-APC (BD Biosciences). All samples
were blocked with 1 �g Fc-block (2.4G2 hybridoma; ATCC). Cells were
acquired with a Becton, Dickinson (Franklin Lakes, NJ) FACScan flow
cytometer with DxP multicolor upgrades by Cytek Development Inc.
(Woodland Park, NJ) and analyzed by using FlowJo software (TreeStar
Inc., Ashland, OR).

Infection. Streptococcus pneumoniae (ATCC 6303; serotype 3) cells
from a frozen stock were grown overnight at 35°C on blood agar plates in
a 5% CO2 incubator. Colonies were scraped from the plate and suspended
in Dulbecco’s phosphate-buffered saline (PBS) (DPBS). The suspension
was then adjusted to a density of an A600 of 0.1 and diluted 1:20.

Mice were anesthetized with isoflurane. The trachea was surgically
exposed, and 20 �l of the bacterial suspension (corresponding to approx-
imately 3 � 104 CFU/animal) or DPBS was injected intratracheally. Mice
were held upright for 10 s to drain the inoculum into the lungs. After
incision closure, mice received 0.05 mg/kg of body weight buprenorphine
(Hospira Inc., Lake Forest, IL) in 1 ml 0.9% saline via subcutaneous in-
jection for fluid resuscitation and pain control (20, 21). During prolonged
(	24-h) infections, a single dose of ceftriaxone (1 mg; 50 mg/kg body
weight) was given 24 h after infection to mimic clinical therapy of pneu-
mococcal pneumonia (22). Mice were monitored at least twice daily for
signs/symptoms of distress.

For harvesting of tissues, mice were sacrificed by deep anesthesia with
isoflurane. Blood was obtained by direct cardiac puncture and diluted for
quantitative culture. For bronchoalveolar lavage (BAL), animals were
placed supine, and the trachea was exposed by dissection. A 26-gauge
intravenous (i.v.) catheter was inserted into the trachea, and 1 ml of sterile
DPBS was injected and immediately withdrawn. The fluid was diluted
from equal volumes for quantitative culture (21).

Pathology. Lungs were perfused with 10 ml of sterile PBS to remove
blood and then fixed in formalin and embedded in paraffin, and sections
were stained with hematoxylin and eosin by the Washington University
Histology core. Images were captured by using an Olympus BX60 micro-
scope with an Olympus U Plan Fl 20� objective equipped with a Zeiss
AxioCam and AxioVision software. The histopathological findings and
grading of alveolar involvement were performed in a blind fashion. Each
lung section was divided into quarters, and two randomly selected sepa-
rate regions in each quarter were graded for inflammatory cell infiltrates
involving the alveoli, airways, and pulmonary vasculature.

For staining of neutrophils, sections were rehydrated, and an antigen
retrieval step was performed by using citric acid buffer. Sections were

stained by using a rat anti-mouse neutrophil antibody (NIMP-R14; Ab-
cam, Cambridge, MA), visualized by using a Vectastain ABC AP kit (Vec-
tor Laboratories, Burlingame, CA) with Alkaline Phosphatase Substrate
kit III (Vector Laboratories), and counterstained with nuclear fast red
stain. Images were obtained with an Olympus NanoZoomer 2.0-HT sys-
tem. NDP.scan 2.5 and NDP.view were used for image acquisition and
image viewing, respectively (Hamamatsu). The number of polymorpho-
nuclear leukocytes (PMNs) was quantified by using Image ProPlus (Me-
dia Cybernetics, Bethesda, MD).

Cell isolation. Lungs were perfused with 10 ml of sterile PBS and
homogenized (23). Dead cells (Yellow Live/Dead Fixable Dead Cell Stain
kit; Invitrogen) and nonhematopoietic (CD45neg) cells were excluded
from the analysis. Cells were identified as indicated (Table 1) (23).

Determination of chemokine and cytokine concentrations. BAL
fluid recovered from infected WT and LPL�/� mice was assayed for se-
lected cytokines and chemokines by using the Bio-Plex 23-plex mouse
cytokine assay (Bio-Rad, Valencia, CA) according to the manufacturer’s
instructions.

In vivo phagocytosis assays. WT and LPL mice were infected intra-
tracheally with FITC-labeled pneumococci. Three hours following infec-
tion, BAL fluid was obtained. Fluorescence of extracellular FITC was
quenched by washing with trypan blue. Alveolar macrophages were iden-
tified as CD45
 CD11chigh, and phagocytosis of pneumococci was mea-
sured by the shift in FITC fluorescence. We have confirmed by using
additional markers (CD64, MerTK, and Siglec-F) that CD45
 CD11chigh

cells in BAL fluid are primarily macrophages (data not shown). Cells in
BAL fluid were quantified by flow cytometry.

Determination of intracellular IFN-� production. NK cells were as-
sayed for IFN-� production by using intracellular flow cytometry (24).
For in vitro stimulation, splenocytes were cultured with either IL-12 (10
ng/ml; Peprotech) plus IL-15 (100 ng/ml; MBL International) or medium
alone for a total of 4 h, with BD GolgiPlug (BD Biosciences) being added
for the last 3 h. For assessment of IFN-� production following pneumo-
coccal infection, cell suspensions were generated from lungs as described
above. After staining for surface markers, cells were fixed and permeabil-
ized (Cytofix/Cytoperm; BD Biosciences) and then incubated with IFN-
�–PE.

Generation of bone marrow chimeras. Twenty-four hours after irra-
diation with 900 rads, CD45.1
 WT mice were reconstituted with bone
marrow from CD45.2
 WT or CD45.2
 LPL�/� mice. For competitive
(mixed) bone marrow chimeras, CD45.1
/CD45.2
 WT recipients were
irradiated and reconstituted with mixed bone marrow from congenically
marked WT and LPL�/� mice. Three weeks after reconstitution, recipient

TABLE 1 Panels of surface markers used to characterize populations of hematopoietic cellsa

Cell type

Marker detected by:

FITC PE PerCP-Cy5.5 PE-Cy7 APC APC-Cy7 Pacific Blue

PMNs CD11b� B220� CD8� CD45� Ly6C� CD115� Ly6G�

Monocytes CD11b� B220� CD8� CD45� Ly6C� CD115� Ly6G�

B cells CD11b� B220� CD8� CD45� Ly6C� CD115� Ly6G�

Macrophages CD11b� CD11chigh Autofluor� CD45� I-Ak� CD103� Ly6G�

CD11b
 DCs CD11b� CD11chigh Autofluor� CD45� I-Ak� CD103� Ly6G�

CD103
 DCs CD11b� CD11chigh Autofluor� CD45� I-Ak� CD103� Ly6G�

CD4
 T cells TCR�� CD3� CD8� CD45� CD4� TCR�/�� Dx5�

CD8
 T cells TCR�� CD3� CD8� CD45� CD4� TCR�/�� Dx5�

�/� T cells TCR�� CD3� CD8� CD45� CD4� TCR�/�� Dx5�

NK cells CD3� IFN-�
/� CD45� NK1.1�

Progenitors CD31� Ly6Cmid

Peritoneal monocytes B220� F4/80� CD115�

Peritoneal macrophages B220� F4/80� CD115�

a See reference 23. Dead cells were excluded from the analysis. Positive markers are in boldface type. CD45 was not included for cells isolated from bone marrow (progenitors) or
from peritoneal wash specimens (monocytes and macrophages), as virtually all cells isolated from these sites are of hematopoietic origin. Abbreviations: PMNs, polymorphonuclear
cells (neutrophils); DCs, dendritic cells; Autofluor, autofluorescence.
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mice were sacrificed, and tissues were analyzed for engrafted donor cells
by flow cytometry.

Proliferation and cell death assays. Proliferation of alveolar macro-
phages was determined by measuring bromodeoxyuridine (BrdU) incor-
poration (17). BrdU incorporation was assessed (BrdU-APC kit; BD Bio-
sciences) 24 h after mice were injected intraperitoneally (i.p.) with 2 mg
BrdU in PBS (10 mg/ml; BD Biosciences and Sigma-Aldrich, Saint Louis,
MO). Cell viability was by determined using annexin V-APC staining
according to the manufacturer’s instructions (BioLegend) (25). The use of
the APC fluorophore avoided overlap of the intrinsic autofluorescence of
macrophages.

Statistics. The mortality rates of infected WT and LPL�/� mice were
compared with a Kaplan-Meier survival curve, and the P value to assess
the significance of differences was determined by using a log-rank test. All
other P values were determined by using the unpaired, two-tailed Mann-
Whitney test. Data were analyzed and graphed by using GraphPad Prism
5 (GraphPad Software Inc., La Jolla, CA).

RESULTS
LPL�/� mice rapidly succumb to infection and fail to clear
pneumococci from alveoli. As no requirement for LPL expression
by immune cells during infection has been reported previously, we
first determined if LPL�/� mice were more susceptible to pneu-
mococcal infection. We modeled pneumococcal pulmonary in-
fection as this is the most common physiological route of infection
and the most common organ affected by pneumococci. WT and
LPL�/� mice were challenged intratracheally (i.t.) with S. pneu-
moniae serotype 3 cells. Mice were given a single dose of ceftriax-
one (1 mg) 24 h after inoculation to mimic clinical therapy of
patients presenting with pneumococcal pneumonia (22). Over
70% of LPL�/� mice rapidly succumbed to infection, while 80%
of WT mice survived (Fig. 1A). Expression of LPL is thus essential
for survival following pulmonary challenge with pneumococci.

The mortality of LPL�/� mice was associated with a failure to
clear pneumococci from the alveolar space: at 3, 6, 24, and 48 h
after challenge, LPL�/� mice had 10-fold more pneumococci in
BAL fluid than did WT mice (Fig. 1B to E). The increased number
of CFU/ml in the BAL fluid of LPL�/� mice at 3 h after challenge
indicates a very early defect in pathogen clearance. Early in infec-
tion (3 and 6 h following challenge), we did not find dissemination
of pneumococci to the bloodstream in either WT or LPL�/� mice
(data not shown). However, by 24 and 48 h after infection, there
was significantly increased dissemination into the bloodstream of
LPL�/� mice compared to WT mice, likely reflecting the increased
pneumococcal burden in BAL fluid (Fig. 1D and E). The pneumo-
coccal burden in LPL�/� mice remained higher despite a single
dose of ceftriaxone given 24 h after challenge (Fig. 1E), indicating
that directed antibiotic therapy cannot rescue animals when very
early pathogen clearance is defective.

The increased susceptibility to pneumococcal infection in
LPL�/� mice appeared to result from a defect in innate immunity.
Normal expression of LPL is restricted to hematopoietic cells (8, 9,
26–29). Thus, defective immunity in LPL�/� mice against pneu-
mococcal challenge must lie within cells of hematopoietic origin.
Furthermore, mice deficient for all T and B cells, and, thus, defi-
cient for antibody production, but sufficient for all innate im-
mune components (Rag1�/� mice) cleared pneumococci from
the BAL fluid as effectively as WT mice 6 h after infection (Fig.
1C). Therefore, as the pneumococcal burden was significantly
higher in LPL�/� mice than in Rag1�/� mice (Fig. 1C), the early

defect in the host response of LPL�/� mice lies within innate im-
munity.

Diminished numbers of alveolar macrophages in BAL fluid
of LPL�/� mice. Alveolar macrophages provide the first line of
defense against pulmonary pneumococcal infection. The very
early pneumococcal clearance defect observed in LPL�/� mice
suggested a defect in an innate immune cell type critical in the first
hours following pneumococcal challenge, such as alveolar macro-
phages. We therefore quantified alveolar macrophages in the BAL
fluid of LPL�/� mice using flow cytometric analysis of CD45


CD11chigh Ly6Gneg cells, excluding neutrophils as Ly6G
. In un-
infected animals and in animals infected for only a few hours,
there were significantly fewer alveolar macrophages in the BAL
fluid of LPL�/� mice (Fig. 2A and B). By 24 h after infection,
numbers of alveolar macrophages in the BAL fluid of WT and
LPL�/� mice were similar (data not shown), although the pneu-
mococcal burden in LPL�/� BAL fluid was 10-fold higher. LPL�/�

FIG 1 LPL�/� mice are profoundly susceptible to infection with pneumo-
cocci and exhibit a very early pneumococcal clearance defect. (A) Age- and
gender-matched WT (n � 9; 5 female and 4 male) and LPL�/� (n � 10; 5
female and 5 male) mice were infected i.t. with S. pneumoniae serotype 3 strain
ATCC 6303 at time zero. A single, nonsterilizing dose of ceftriaxone was given
at 24 h (arrow). Mice were monitored for 2 weeks for morbidity and mortality.
Data were pooled from 2 independent experiments. P values were determined
by a log-rank test. (B to E) Colony counts from BAL fluid (B to E) or blood (D
and E) of the indicated mice 3 h (B), 6 h (C), 24 h (D), and 48 h (E) after i.t.
instillation of pneumococci. No antibiotic was given for panels B, C, and D, but
a single nonsterilizing dose of ceftriaxone was given at 24 h for panel E, to
correlate with the treatment data in panel A. Each point represents a single
animal, lines represent median values, and P values were determined by using
a two-tailed Mann-Whitney test. Data were from 2 (B to E) or 3 (C) indepen-
dent experiments. For panels B to D, all mice were male. For panel E, mice of
each genotype were male (n � 5) and female (n � 5).
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mice also had fewer alveolar macrophages than did Rag1�/� mice
(Fig. 2B), correlating with the ability to clear pneumococci from
the alveolar space at 6 h after infection (Fig. 1C). Diminished
numbers of alveolar macrophages in LPL�/� lungs early in infec-
tion would explain the defective clearance of pneumococci.

We next determined whether LPL is required for phagocytosis
of pneumococci by alveolar macrophages (Fig. 2C and D) by in-
fecting mice with FITC-labeled pneumococci and quantifying a
shift in fluorescence by flow cytometry. Trypan blue was used to

quench the signal from labeled pneumococci that externally ad-
hered to macrophages. While there were fewer alveolar macro-
phages present in the BAL fluid of LPL�/� mice (Fig. 2C), we
found no difference in the percentages of LPL�/� and WT alveolar
macrophages that ingested FITC-labeled pathogens (Fig. 2D). We
also did not observe any difference in the mean fluorescence in-
tensity of FITC-positive macrophages (Fig. 2C and data not
shown), indicating that alveolar macrophages from WT and
LPL�/� mice ingested similar quantities of pneumococcal parti-
cles. To confirm that LPL was dispensable for phagocytosis, we
also measured the ingestion of opsonized fluorescent beads by
peritoneal macrophages harvested from thioglycolate-injected
mice. There was no difference in uptake between WT and LPL�/�

peritoneal macrophages (data not shown).
Pulmonary inflammatory infiltrates in lungs from WT and

LPL�/� mice are similar 24 h after infection. To determine
whether there were additional defects in the recruitment of innate
immune cells in LPL�/� mice during pneumococcal infection, we
assessed pulmonary inflammatory infiltrates via histology. Histo-
logical sections 24 h after infection demonstrated a few mononu-
clear cell nodules in the air space and adjacent to bronchi, with no
significant difference between lungs from WT and lungs from
LPL�/� mice (Fig. 3). No endobronchial involvement was noted.
Significant neutrophil infiltrates were not observed in sections
stained with hematoxylin and eosin. Specific staining for neutro-
phils revealed a trend toward a greater number of neutrophils
present in LPL�/� lungs (Fig. 3B), but the increase across multiple
sections was not statistically significant (data not shown). The
relative lack of congestion or consolidation in the lungs of LPL�/�

mice suggests that a failure to limit pneumococcal replication and
dissemination, rather than overt pneumonia, caused lethality.

Neutrophil influx into lungs of LPL�/� mice following pneu-
mococcal infection is intact. Neutrophils and inflammatory

FIG 2 Decreased numbers of alveolar macrophages recovered from BAL fluid
of LPL�/� mice. Phagocytosis of pneumococci by alveolar macrophages was
unimpaired in LPL�/� mice. (A) Total numbers of alveolar macrophages iso-
lated from BAL fluid of WT (gray circles) and LPL�/� (filled circles) mice,
uninfected or infected for the indicated periods of time. (B) Percentages of
CD45
 cells that were CD11chigh isolated from the BAL fluid of WT (gray
circles), LPL�/� (filled circles), and Rag1�/� (open circles) mice 6 h after i.t.
instillation of pneumococci. For panels A and B, each symbol represents data
from one mouse, lines represent median values, P values were determined by a
Mann-Whitney test, and data were pooled from at least 2 independent exper-
iments per time interval. (C) Representative flow cytometric analysis of num-
bers of alveolar macrophages (left) and phagocytosis of FITC-labeled S. pneu-
moniae (SP-FITC) by gated macrophages (right). Alveolar macrophages were
assessed by using the phenotypic markers CD45
 and CD11c
; neutrophils
were excluded based on Ly6G
 CD11c� staining. A control panel for a WT
mouse challenged with PBS is shown at the top. (D) Percentages of alveolar
macrophages isolated from BAL fluid of WT or LPL�/� mice that were positive
for FITC-labeled pneumococci 3 h after challenge. Each symbol represents one
mouse, lines indicate median values, P values were determined by a Mann-
Whitney test, and data were from 2 independent experiments.

FIG 3 There is no dramatic increase in consolidation in lungs from infected
LPL�/� mice. (A) Hematoxylin and eosin (H&E) staining of formalin-fixed
sections of lungs from infected WT and LPL�/� mice 24 h after challenge. (B)
Specific staining for neutrophils in lung sections from infected WT and
LPL�/� mice 24 h after challenge. In panels A and B, the black scale bar
indicates 50 �m. Images are representative of 9 to 10 mice.
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monocytes are rapidly recruited into the lungs as part of the innate
immune response to pneumococcal infection. We further quan-
tified pulmonary inflammatory infiltrates through flow cytomet-
ric analysis of hematopoietic cells from perfused, homogenized
lungs from naive and infected WT and LPL�/� mice (Fig. 4). Total
numbers of hematopoietic cells were increased in both WT and
LPL�/� mice following infection, with no differences between WT
and LPL�/� mice. The trend toward a greater neutrophilic infil-
trate in the lungs of LPL�/� mice observed by histology (Fig. 3B)
correlated with the quantification obtained by flow cytometry
(Table 1) (neutrophils defined as CD45
 CD11b
 Ly6C
 Ly6G


cells), although the increase was not significantly different. There
was also no difference in numbers of recruited inflammatory
monocytes (defined as CD45
 CD11b
 Ly6C
 Ly6Gneg CD115


cells). NK cell recruitment, using Dx5 as a marker, was also unim-
paired in LPL�/� mice. Thus, the recruitment of several innate
immune cell populations into the lung parenchyma 24 h following

pneumococcal infection did not appear to be impaired in LPL�/�

mice (Fig. 4).
To further characterize the pulmonary immune response of

LPL�/� mice, we determined the numbers of dendritic cells
(DCs), B cells, and T cells in the lungs of uninfected and infected
WT and LPL�/� mice (Fig. 4). In uninfected animals, the numbers
of CD8
 T cells and B cells present in the lung interstitium were
reduced in LPL�/� mice compared to WT mice. Following infec-
tion, the numbers of CD11b
 dendritic cells and �/� T cells in-
creased in both WT and LPL�/� mice, although there were signif-
icantly fewer cells of both of these populations in LPL�/� mice.
Infection also resulted in a loss of CD8
 T cells in both groups,
while the numbers of CD4
 T cells and B cells were unchanged.
Rag1�/� mice lack all B and T cells but effectively clear pneumo-
cocci 6 h after challenge (Fig. 1C), so it is unlikely that the reduced
numbers of lung B, CD8
, and �/� T cells contribute significantly
to defective pneumococcal clearance in LPL�/� mice. Thus, al-

FIG 4 Enumeration of immune cells in lung tissue from uninfected and infected WT and LPL�/� mice. Homogenates of perfused right lungs from either
uninfected or infected WT or LPL�/� mice were analyzed by flow cytometry to determine the distribution of CD45
 cells. Cell types were determined by using
markers described in Materials and Methods (Table 1). Data shown are means � standard errors of the means, and P values were determined by a Mann-Whitney
test (n � 9 or 10 mice for each column, with data pooled from at least 2 independent experiments).
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though we found selective decreases in certain populations of im-
mune cells in the lungs of LPL�/� mice at 24 h after infection, the
recruitment of neutrophils and monocytes appeared to be intact.

The enumeration of hematopoietic cells in the blood and
spleen of WT and LPL�/� mice 24 h after pneumococcal infection
reflected the sicker status of LPL�/� mice (Fig. 5). Severe sepsis
causes apoptotic loss of lymphocyte populations (30), and we
found fewer lymphocytes in the blood and spleens of infected
LPL�/� mice (Fig. 5 and data not shown). Numbers of blood
monocytes were reduced in infected WT and LPL�/� mice, prob-
ably because of recruitment to peripheral tissues. The numbers of
blood and splenic monocytes in WT and LPL�/� mice were sim-
ilar (Fig. 5). The number of neutrophils in the blood and spleen of
infected LPL�/� mice was increased, correlating with the in-
creased pneumococcal burden at this time point (Fig. 1D and 5).
Thus, we found no defect in the peripheral mobilization of neu-
trophils or monocytes to explain the increased susceptibility of
LPL�/� mice to pneumococcal infection.

Production of inflammatory cytokines and chemokines in
LPL�/� mice following pneumococcal infection is intact. To
further characterize the pulmonary immune response to pneu-
mococcal infection in LPL�/� mice, we determined if the produc-
tion of inflammatory cytokines or chemokines (e.g., IL-6, TNF-�,
IL-1�, granulocyte colony-stimulating factor [G-CSF], CCL5,
CCL4, CXCL1, and CCL2) (31) was defective in LPL�/� mice by
assaying the BAL fluid of WT and LPL�/� mice 24 h after pneu-
mococcal challenge (Fig. 6). The concentrations of many of these
factors were significantly higher in the BAL fluid of LPL�/� mice,
consistent with a higher burden of pneumococcal disease (Fig. 1B
to E). While levels of IL-6 and other cytokines were significantly
elevated in the BAL fluid of LPL�/� mice, the level of IL-1� was
not. The lack of elevated levels of IL-1� is perhaps reflective of the
decreased numbers of alveolar macrophages. In some systems,
IFN-� production has been associated with increased survival fol-

lowing pneumococcal challenge (31–35). However, we did not
detect significant levels of IFN-� in the BAL fluid from WT or
LPL�/� mice 6 or 24 h after pneumococcal infection (data not
shown). The use of either a different pneumococcal serotype or a
different murine background likely explains the observed differ-
ences in IFN-� production, and indeed, not all investigations
found increased IFN-� levels in the first 24 h following pneumo-
coccal infection (36, 37). Thus, we did not find a significant loss of
any measured chemokine or cytokine in LPL�/� mice, and thus, a
failure to generate a required inflammatory mediator is not likely
to explain pneumococcal susceptibility in LPL�/� mice.

NK cell recruitment is intact in LPL�/� mice following pneu-
mococcal infection. NK cells constitute a significant proportion
of lung-resident innate immune cells (38). To further clarify
whether defects in NK cell recruitment could underlie the suscep-
tibility of LPL�/� mice to pneumococcal infection, we analyzed
the presence of NK cells in the lungs of WT and LPL�/� mice using
NK1.1 (Fig. 7A). While the percentage of NK cells increased in the
lung following infection with Staphylococcus aureus or Klebsiella
pneumoniae within 24 h (38), we did not find an increase in NK
cell percentages in WT mice following serotype 3 pneumococcal
infection (Fig. 7A). The observed decrease in percentages is likely
due to the influx of other immune cells types, such as neutrophils
and monocytes (Fig. 4). There was also no difference in the total
number of NK1.1
 cells isolated from the lungs of WT and
LPL�/� mice 24 h after pneumococcal infection (data not shown).
Thus, we did not find a defect in NK cell numbers to explain the
susceptibility of LPL�/� mice to pneumococci. NK cells can serve
as a source of IFN-� following cytokine activation (39). In vitro
cytokine stimulation of WT and LPL�/� splenocytes did not re-
veal defective IFN-� induction in LPL�/� NK cells (Fig. 7B). Fi-
nally, we did not see a significant intracellular signal for IFN-� in
NK1.1
 cells in the lungs of infected WT and LPL�/� mice
(Fig. 7C), consistent with the undetectable levels of IFN-� in the

FIG 5 Increased numbers of neutrophils in the blood (A) and spleens (B) of LPL�/� mice infected with pneumococci. Twenty-four hours after i.t. instillation
of pneumococci, blood and spleens were harvested from WT and LPL�/� mice. Cell types were determined by flow cytometric analysis as described in Materials
and Methods (Table 1). Data shown are means � standard errors of the means, and P values were determined by a Mann-Whitney test (n � 8 to 10 mice for each
column, with data pooled from at least 2 independent experiments).
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BAL fluid (data not shown). Thus, we did not find a deficiency in
the numbers or IFN-� production of lung LPL�/� NK cells to
explain the early pneumococcal clearance defect.

Evaluation of the intrinsic requirement for LPL in regenera-
tion of myeloid cells following irradiation. The most significant
defect identified in our analysis of the early inflammatory re-
sponse to pneumococcal infection in LPL�/� mice is the reduced
numbers of alveolar macrophages (Fig. 2A and B). Reduced num-
bers of alveolar macrophages would be predicted to reduce the
ability to initially clear pneumococci from the alveolar space, con-
sistent with the early clearance defect (Fig. 1B). To confirm that
LPL is required to establish or maintain alveolar macrophages
within the alveolar space, we analyzed the regeneration of alveolar
macrophages in bone marrow chimeras following whole-body ir-
radiation (Fig. 8A to D). WT (CD45.1
) recipient mice were re-
constituted with bone marrow from CD45.2
 WT or CD45.2


LPL�/� mice (Fig. 8A to C). Three weeks later, cells from blood,
lungs, and BAL fluid were assessed for replacement by donor-
derived cells. As expected, radiosensitive cell types, such as circu-
lating neutrophils, were completely replaced by donor-derived
cells in recipients receiving bone marrow from either WT or
LPL�/� mice, indicating equivalent irradiation of recipient mice
and equivalent engraftment of donor-derived bone marrow (Fig.
8A and B). In the lung parenchyma, CD11b
 dendritic cells
(CD45
 CD11chigh autofluorescentlow I-Akhigh CD11b
 CD103neg

Ly6Gneg) were also completely replaced by donor-derived cells.
Equivalent numbers of recipient (CD45.2
) alveolar macro-
phages were still present in the BAL fluid of all recipient mice (Fig.
8C), recapitulating previous reports that macrophages are rela-
tively radioresistant, with a half-life of 2 to 4 weeks following irra-

FIG 6 Increased concentrations of inflammatory cytokines and chemokines in BAL fluid of infected LPL�/� mice. BAL fluid was harvested from WT (gray
circles) and LPL�/� (filled circles) mice 24 h after pneumococcal infection. Concentrations of the indicated inflammatory chemokines or cytokines were
determined by using the Bio-Rad Bio-Plex assay. Each symbol represents data from one animal, lines represent mean values, P values were determined by using
a Mann-Whitney test, and data were pooled from two independent experiments. MCP-1, monocyte chemoattractant protein 1.

FIG 7 NK cell recruitment is unimpaired in infected LPL�/� mice. (A) Per-
centages of NK cells found in the lungs of either naive WT (gray circles) and
LPL�/� (filled circles) mice or mice 24 h after pneumococcal infection. Each
symbol represents data from one mouse, lines represent median values, and
data are from at least two independent experiments. (B) Percentages of splenic
NK cells positive for IFN-� following in vitro stimulation with IL-12 and IL-15.
Cells were from WT (gray bars) or LPL�/� (filled bars) mice; data shown are
means � standard errors of the means (n � 3 mice in each group). (C) Per-
centages of lung NK cells positive for IFN-� 24 h after pneumococcal infection.
Each symbol represents data from one animal (open circles, uninfected WT
mice; gray circles, infected WT mice; filled circles, infected LPL�/� mice), lines
represent median values, and data are from two independent experiments.
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diation (40, 41). In mice receiving bone marrow from LPL�/�

mice, the percentages and numbers of alveolar macrophages de-
rived from donor bone marrow were significantly reduced (Fig.
8A to C). We confirmed a cell-intrinsic requirement for LPL in the
repopulation of alveolar macrophages using mixed, competitive
bone marrow chimeras (Fig. 8D), in which residual recipient cells
could be identified as CD45.1
/CD45.2
. Neutrophils in the
blood were almost completely replaced by donor marrow (ap-
proximately 65% WT derived and 30% LPL�/� derived). The per-
centage of alveolar macrophages derived from donor WT marrow
was the same as that of neutrophils. However, the percentage of
alveolar macrophages derived from LPL�/� bone marrow was sig-
nificantly reduced, indicating a relative impairment in the regen-
eration of alveolar macrophages from LPL�/� bone marrow (Fig.
8D). LPL is therefore essential for normal regeneration of alveolar
macrophages following irradiation.

To further analyze the requirement for LPL in alveolar macro-
phage homeostasis, we explored the self-renewal and cell death of
alveolar macrophages in naive WT and LPL�/� mice. Under ho-
meostatic conditions, alveolar macrophages are not repopulated
from blood-derived monocytes (42). Rather, alveolar macro-
phages are thought to seed the lungs in late fetal development and
then self-renew through proliferation (43). Alveolar macrophages
in LPL�/� mice exhibited increased BrdU incorporation, reveal-
ing that LPL is not required for the proliferation or self-renewal of
alveolar macrophages (Fig. 8E). The increased proliferative rate of
alveolar macrophages in LPL�/� mice may well be a compensa-
tory upregulation given the overall reduced numbers. We did not
find evidence of increased cell death of alveolar macrophages in
LPL�/� lungs or BAL fluid using annexin V staining (Fig. 8F),
indicating that LPL is dispensable for alveolar macrophage sur-
vival in naive animals.

The failure of LPL�/� bone marrow to repopulate the alveolar
macrophage niche following total body irradiation along with the
increased proliferative rate and normal cell death rate in naive
mice suggest that LPL is required for the maturation or produc-
tion of alveolar macrophages. To determine whether LPL was re-
quired for the maintenance of precursor cells required to generate
monocytes and macrophages, we analyzed the percentages of
CD31
 Ly6Cmid cells in bone marrow (Fig. 8G) (44). We found no
significant difference in the percentages of progenitor cells in the
bone marrow of WT and LPL�/� mice (Fig. 8G). We also did not
find significant differences in the percentages of peritoneal mac-
rophages or peritoneal monocytes isolated from WT and LPL�/�

mice (Fig. 8H and I). Thus, we did not find evidence that LPL is
required for general myeloid development. Rather, LPL appears to
be specifically required for either alveolar macrophage maturation
or migration of alveolar macrophage precursors into the lungs.
LPL is thus required for the generation of a full complement of
alveolar macrophages. LPL�/� mice are extraordinarily sensitive
to pulmonary pneumococcal challenge, identifying LPL as a crit-
ical protein in the pulmonary host immune response.

DISCUSSION

The rapid mortality of LPL�/� mice following intratracheal pneu-
mococcal challenge reveals a previously undiscovered role for LPL
in host defense during the early hours of infection. The early post-
challenge mortality of LPL�/� mice correlated with diminished
numbers of alveolar macrophages in uninfected mice and in mice
infected for short durations (3 and 6 h). Our results suggest that

FIG 8 Production of alveolar macrophages requires LPL. (A to D) Regenera-
tion of alveolar macrophages is delayed when donor bone marrow is derived
from LPL�/� mice. (A) Representative flow cytometric analysis of bone mar-
row chimeras showing the percentages of the indicated cells derived from
either donor (CD45.2
) or recipient (CD45.1
) bone marrow. Populations of
neutrophils (PMNs), CD11b
 dendritic cells (DCs), and alveolar macro-
phages (AMs) were determined as described in Materials and Methods (Table
1). (B) Percentages of each indicated cell type derived from either WT or
LPL�/� donor bone marrow. (C) Numbers of alveolar macrophages isolated
from BAL fluid of recipient mice that were endogenous (CD45.1
; recipients)
or derived from donor bone marrow (CD45.2
). For panels B and C, data
shown are means � standard errors of the means, and P values were deter-
mined by a Mann-Whitney test (n � 5 [LPL�/� reconstituted] or 6 [WT
reconstituted], with data pooled from 2 independent experiments). (D) Per-
centages of neutrophils (PMNs) and alveolar macrophages derived from
CD45.1
 WT donor bone marrow, CD45.2
 LPL�/� donor bone marrow, or
CD45.1
/CD45.2
 recipient cells. Data shown are means � standard errors of
the means, and P values were determined by a Mann-Whitney test (n � 9 mice,
with data pooled from 2 independent experiments). (E) Percentages of alveo-
lar macrophages positive for BrdU incorporation. (F) Mean fluorescence in-
tensities (MFI) of annexin V-APC staining on alveolar macrophages either
present in the BAL fluid or isolated from lungs. (G) Percentages of mixed
progenitor cells found in bone marrow. (H) Percentages of total cells from
peritoneal wash specimens that were macrophages. (I) Percentages of total
cells from peritoneal wash specimens that were monocytes. For panels E to I,
each symbol represents data from one mouse, lines represent median values, P
values were determined by a Mann-Whitney test, and data were pooled from at
least two independent experiments. n.s., not significant.
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impaired maturation of alveolar macrophages leads to increased
susceptibility of LPL�/� mice to pulmonary pneumococcal chal-
lenge, consistent with previous reports that the depletion of alve-
olar macrophages impairs the ability to eliminate pneumococci
from the alveolar space early in infection (4, 5).

The increased pneumococcal burden in the BAL fluid of
LPL�/� mice as early as 3 h after infection distinguishes our model
from previous models of pneumococcal susceptibility (45–48). In
a recent report, neutrophilic defects in antipneumococcal killing
increased the pulmonary pneumococcal burden 12 and 24 h after
challenge, but differences were not observed at 6 h, a point in
infection when alveolar macrophages would be expected to dom-
inate the initial immune response (46). Further analysis of pneu-
mococcal susceptibility in LPL�/� mice should therefore delineate
critical determinants of an effective host immune response that
are essential in the first few hours following challenge.

Alveolar macrophages serve multiple functions during pneu-
mococcal pneumonia. Engagement of Toll-like receptors by
pathogen-associated molecular patterns induces IL-1 and TNF-�
(31, 36). The absence of significantly reduced IL-1 or TNF-� levels
in the BAL fluid of LPL�/� mice at either 6 or 24 h (Fig. 6 and data
not shown) suggests that either LPL�/�-derived alveolar macro-
phages retain the ability to generate these critical inflammatory
cytokines or other cell types also produce these cytokines during
pneumococcal infection. Alveolar epithelial cells are thought to
produce significant levels of proinflammatory cytokines such as
IL-1�, TNF-�, macrophage inflammatory protein 2 (MIP-2), and
keratinocyte-derived chemokine (KC) during pulmonary infec-
tion (49–51). Because LPL is normally expressed only in hemato-
poietic cells, the function of non-hematopoietically derived epi-
thelial cells would be expected to be fully intact in LPL�/� mice.
Indeed, the increased concentrations of many inflammatory cyto-
kines noted during pneumococcal infection of LPL�/� mice (Fig.
6) may be due to an increased activation of unaffected cell types
due to the higher pneumococcal burden. Future work will com-
pare the activations of WT and LPL�/� alveolar macrophages and
other cell types in greater detail.

The regulation of alveolar macrophage development remains
to be fully elucidated (42, 43, 52, 53). Compelling evidence that
alveolar macrophages are derived from hematopoietic precursors
that migrate into the lung during late fetal development has been
presented. Under homeostatic conditions, alveolar macrophages
self-renew through proliferation and are not replaced from circu-
lating monocytes (43). Self-renewal via increased proliferation
without repopulation from blood monocyte precursors was also
found in parabiotic experiments examining alveolar macrophage
repopulation following pneumonectomy (42). We found in-
creased proliferation of alveolar macrophages in LPL�/� mice un-
der homeostatic conditions, suggesting that the existing pool of
alveolar macrophages in LPL�/� mice is compensating for de-
creased numbers by increased self-renewal. However, alveolar
macrophages were regenerated from peripheral blood monocytes
via a lung macrophage intermediary after alveolar macrophages
were depleted via diphtheria toxin treatment in CD11c:DTR mice
(52). Alveolar macrophages can also be regenerated from blood
monocytes following pneumococcal infection (54). Our results
indicate that LPL is essential for the regeneration of alveolar mac-
rophages following depletion via irradiation, consistent with
those previous results. The maintained populations of bone mar-
row progenitor cells, peritoneal macrophages, and peritoneal

monocytes in LPL�/� mice suggest that LPL is not required for
myeloid development in general. Taken as a whole, our data sug-
gest that LPL is required either for the specific maturation of alve-
olar macrophages or possibly for the migration of alveolar mac-
rophage precursors into the lung tissue. The requirement for LPL
for the development of normal numbers of alveolar macrophages
provides a model system that we will use in future work to illumi-
nate a clearer understanding of the ontogeny of alveolar macro-
phages.

Because LPL localizes to the macrophage phagocytic cup (55),
we were surprised that it was not required for phagocytosis. LPL
was also dispensable for neutrophil-mediated phagocytosis of
Staphylococcus aureus (12). Either actin bundles are not required
for phagocytosis or other proteins compensate for LPL. We are
currently assessing if pneumococcal killing is disrupted by an LPL
deficiency. Even if alveolar macrophage function is otherwise nor-
mal in LPL�/� mice, the relative reduction of alveolar macro-
phage numbers would be predicted to allow pneumococcal repli-
cation and increased susceptibility.

We have not yet identified defects in LPL�/� neutrophils that
contribute to pneumococcal susceptibility. We found no defects
in the recruitment of neutrophils into the lungs following infec-
tion, consistent with previous observations (12). The only defect
in LPL�/� neutrophils is integrin-mediated signaling to the gen-
eration of the oxidative burst, although other stimuli can success-
fully trigger the oxidative burst (12). Neutrophil killing of strep-
tococci is thought to occur independently of the oxidative burst
(46, 56). Finally, the outgrowth of pneumococci in the alveolar
space of LPL�/� mice occurs in the first few hours of infection, a
time during which neutrophils are yet to be recruited in substan-
tial numbers to eliminate pneumococci (3, 46). Taken together,
these considerations additionally suggest that alveolar macro-
phages are the defective cells in early antipneumococcal defense in
LPL�/� mice.

Interestingly, at baseline and after pneumococcal challenge,
there are reduced numbers of other populations of immune cells
(CD11b
 and CD103
 DCs and CD4
 T, CD8
 T, and �/� T and
B cells) (Fig. 4) in the lungs of LPL�/� mice. The functions of
conventional pulmonary CD4
 and CD8
 T cells, B cells, NK
cells, and dendritic cells during acute pneumococcal infection, if
any, are unclear (38, 57–62). It is unlikely that the diminished
numbers of pulmonary T and B cells contribute to the extreme
susceptibility of LPL�/� mice to pneumococcal challenge, given
that Rag1�/� mice clear pneumococci effectively at 6 h after in-
fection (Fig. 1C). NK cells may contribute to pneumococcal clear-
ance by producing IFN-� and activating monocytes and macro-
phages when the pneumococcal challenge dose is very high (4 �
108 CFU/mouse); no requirement for NK cells was found at lower
doses (5 � 107 CFU/mouse) at early time points in infection (61).
It remains possible that there are other NK cell defects in LPL�/�

mice that could contribute to increased susceptibility at later time
points during infection, which will be investigated in future work.
The role for lung-resident dendritic cells during pneumococcal
pneumonia is currently unclear and in fact may vary under differ-
ent experimental conditions. CD103
 dendritic cells played a cru-
cial role in protecting mice from death by producing IFN-� and
IL-17 and in activating invariant NKT cells following pretreat-
ment of mice with �-galactosylceramide (34). In contrast, increas-
ing pulmonary dendritic cell populations via treatment with FMS-
like tyrosine kinase 3 ligand (Flt3L) exacerbated inflammation
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and mortality during pulmonary pneumococcal infection (63),
and depleting all dendritic cells prior to infection actually pro-
moted survival in another report (64). Thus, it is possible that
reduced recruitment of dendritic cells in LPL�/� mice contributes
to the susceptibility of the LPL�/� mice by decreasing production
of needed inflammatory mediators such as IL-17. It is also possible
that diminished numbers of dendritic cells are protective in
LPL�/� mice but are ultimately insufficient for survival. LPL�/�

mice will thus offer a new model in which to study the specific
contributions of other lung-resident immune cells in future work.

In summary, LPL�/� mice are profoundly susceptible to intra-
tracheal infection with pneumococci. Early mortality correlates
with increased bacterial counts at very early time points following
infection and with diminished numbers of alveolar macrophages
recovered from BAL fluid of LPL�/� mice. We report a previously
unrecognized requirement for LPL in the establishment of normal
numbers of alveolar macrophages. LPL�/� mice provide a novel
model system which we will use in future work to dissect the
requirements for alveolar macrophage maturation and for effec-
tive early defense against pneumococcal lung infection. Defining
host determinants of early antipneumococcal defense is critical for
developing new therapies to prevent or ameliorate this devastating
disease.
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