2,871 research outputs found

    Mind the gap: comparing exploration effort with global biodiversity patterns and climate projections to determine ocean areas with greatest exploration needs

    Get PDF
    The oceans contain 1,335 million km3 of water covering 361.9 million km2 of seafloor across 71% of the planet. In the past few decades, there has been substantial effort put into mapping and exploring the ocean fueled by the advent of new technologies that more easily enable deepwater access. However, we are still far from achieving our shared goals of a well characterized and documented ocean. In 2010, Webb et al. documented the paucity of deep-sea data in general, with a specific focus on the lack of pelagic records in the Ocean Biogeographic Information System OBIS, which is the largest of the ocean biodiversity archives. While significant exploration progress has been made, the rate of change in the ocean is outstripping the rate of characterization and research. Given the limited resources available, future work needs to be prioritized to focus on areas of greatest need. Here, we investigated several lines of inquiry to determine priority areas for future exploration. We accumulated the largest database of global deep submergence dive records ever compiled and used it, plus OBIS biodiversity records, to assess the level of exploration in different ocean regions. Then, we compared these measures of exploration effort with different biogeographic province schemas and estimates of climate change velocity projections to identify the largest remaining gaps in exploration and research sampling. Given that marine science has only explored between 5 and 20% of the ocean (depending on estimates) in the last hundred and fifty years, future exploration needs to be more targeted to attempt to keep pace with the rate and impact of environmental and biodiversity change in the ocean

    Cruise Report: EX-17-11 Gulf of Mexico 2017 (ROV and Mapping)

    Get PDF
    From November 29, 2017 to December 21, 2017, the NOAA Office of Ocean Exploration and Research (OER) and partners conducted a telepresence-enabled ocean exploration expedition on NOAA Ship Okeanos Explorer to collect critical baseline data and information and to improve knowledge about unexplored and poorly understood deepwater areas of the Gulf of Mexico. The Gulf of Mexico 2017 (EX-17-11) expedition was part of a series of expeditions between 2017 and 2018 that explored deepwater areas in the Gulf of Mexico. During 23 days at sea, 17 remotely operated vehicle (ROV) dives were completed off the Western Florida Escarpment and in the central and western Gulf of Mexico. Over 93 hours of ROV bottom time were logged at depths between 300 and 2,321 meters. Over 20,000 square kilometers of seafloor were mapped. A total of 138 biological and 11 geological samples were collected. The expedition gathered over 280,000 live video views worldwide and the OER website received over 35,600 views. A core onshore science team of over 80 participants from around the world collaborated and supported real-time ocean exploration science. The data associated with this expedition have been archived and are publicly available through the NOAA Archives

    A Robotic Ankle-Foot Prosthesis With Active Alignment

    Get PDF
    An ankle-foot prosthesis designed to mimic the missing physiological limb generates a large sagittal moment during push off which must be transferred to the residual limb through the socket connection. The large moment is correlated with high internal socket pressures that are often a source of discomfort for the person with amputation, limiting prosthesis use. In this paper, the concept of active alignment is developed. Active alignment realigns the affected residual limb toward the center of pressure (CoP) during stance. During gait, the prosthesis configuration changes to shorten the moment arm between the ground reaction force (GRF) and the residual limb. This reduces the peak moment transferred through the socket interface during late stance. A tethered robotic ankle prosthesis has been developed, and evaluation results are presented for active alignment during normal walking in a laboratory setting. Preliminary testing was performed with a subject without amputation walking with able-bodied adapters at a constant speed. The results show a 33% reduction in the peak resultant moment transferred at the socket limb interface

    Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites

    Get PDF
    Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur

    An integrated space physics instrument (ISPI) for Solar Probe

    Full text link
    Instruments for the Solar Probe mission must be designed not only to address the unique scientific measurement requirements, but must be compatible with the modest resource dollars as well as tight constraints on mass and power. Another unique aspect of the Solar Probe mission is its constraint on telemetry and the fact that the prime science is conducted in a single flyby. The instrument system must be optimized to take advantage of the telemetry and observing time available. JPL, together with industry and university partners, is designing an Integrated Space Physics Instrument (ISPI) which will measure magnetic fields, plasma waves, thermal plasma, energetic particles, dust, and perform EUV/visible and coronal imaging for the Solar Probe mission. ISPI uses a new architecture and incorporates technology which not only eliminates unnecessary duplication of function, but allows sensors to share data and optimize science. The current ISPI design goal (for a flight package) is a 5 kilogram/10 watt payload. © 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87393/2/131_1.pd

    Chronic Fatigue Syndrome – A clinically empirical approach to its definition and study

    Get PDF
    BACKGROUND: The lack of standardized criteria for defining chronic fatigue syndrome (CFS) has constrained research. The objective of this study was to apply the 1994 CFS criteria by standardized reproducible criteria. METHODS: This population-based case control study enrolled 227 adults identified from the population of Wichita with: (1) CFS (n = 58); (2) non-fatigued controls matched to CFS on sex, race, age and body mass index (n = 55); (3) persons with medically unexplained fatigue not CFS, which we term ISF (n = 59); (4) CFS accompanied by melancholic depression (n = 27); and (5) ISF plus melancholic depression (n = 28). Participants were admitted to a hospital for two days and underwent medical history and physical examination, the Diagnostic Interview Schedule, and laboratory testing to identify medical and psychiatric conditions exclusionary for CFS. Illness classification at the time of the clinical study utilized two algorithms: (1) the same criteria as in the surveillance study; (2) a standardized clinically empirical algorithm based on quantitative assessment of the major domains of CFS (impairment, fatigue, and accompanying symptoms). RESULTS: One hundred and sixty-four participants had no exclusionary conditions at the time of this study. Clinically empirical classification identified 43 subjects as CFS, 57 as ISF, and 64 as not ill. There was minimal association between the empirical classification and classification by the surveillance criteria. Subjects empirically classified as CFS had significantly worse impairment (evaluated by the SF-36), more severe fatigue (documented by the multidimensional fatigue inventory), more frequent and severe accompanying symptoms than those with ISF, who in turn had significantly worse scores than the not ill; this was not true for classification by the surveillance algorithm. CONCLUSION: The empirical definition includes all aspects of CFS specified in the 1994 case definition and identifies persons with CFS in a precise manner that can be readily reproduced by both investigators and clinicians
    • …
    corecore