579 research outputs found

    Investigating the functionality of an OCT4-short response element in human induced pluripotent stem cells.

    Get PDF
    Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages when expressing a suicide gene if pluripotency remains. However, the human OCT4 promoter region is 4 kb in size, limiting the capacity of therapeutic genes and other regulatory components for viral vectors, and decreasing the efficiency of homologous recombination. The purpose of this investigation was to characterize the functionality of a novel 967bp OCT4-short response element during pluripotency and to examine the OCT4 titer-dependent response during differentiation to human derivatives not expressing OCT4. Our findings demonstrate that the OCT4-short response element is active in pluripotency and this activity is in high correlation with transgene expression in vitro, and the OCT4-short response element is inactivated when pluripotent cells differentiate. These studies demonstrate that this shortened OCT4 regulatory element is functional and may be useful as part of an optimized safety component in a site-specific gene transferring system that could be used as an efficient and clinically applicable safety platform for gene transfer in cellular therapeutics

    On Effective Constraints for the Riemann-Lanczos System of Equations

    Get PDF
    There have been conflicting points of view concerning the Riemann--Lanczos problem in 3 and 4 dimensions. Using direct differentiation on the defining partial differential equations, Massa and Pagani (in 4 dimensions) and Edgar (in dimensions n > 2) have argued that there are effective constraints so that not all Riemann tensors can have Lanczos potentials; using Cartan's criteria of integrability of ideals of differential forms Bampi and Caviglia have argued that there are no such constraints in dimensions n < 5, and that, in these dimensions, all Riemann tensors can have Lanczos potentials. In this paper we give a simple direct derivation of a constraint equation, confirm explicitly that known exact solutions of the Riemann-Lanczos problem satisfy it, and argue that the Bampi and Caviglia conclusion must therefore be flawed. In support of this, we refer to the recent work of Dolan and Gerber on the three dimensional problem; by a method closely related to that of Bampi and Caviglia, they have found an 'internal identity' which we demonstrate is precisely the three dimensional version of the effective constraint originally found by Massa and Pagani, and Edgar.Comment: 9pages, Te

    Thermodynamic insights into the intricate magnetic phase diagram of EuAl4_{4}

    Full text link
    The tetragonal intermetallic compound EuAl4_{4} hosts an exciting variety of low temperature phases. In addition to a charge density wave below 140 K, four ordered magnetic phases are observed below 15.4 K. Recently, a skyrmion phase was proposed based on Hall effect measurements under a cc-axis magnetic field. We present a detailed investigation of the phase transitions in EuAl4_{4} under cc-axis magnetic field. Our dilatometry, heat capacity, DC magnetometry, AC magnetic susceptibility, and resonant ultrasound spectroscopy measurements reveal three magnetic phase transitions not previously reported. We discuss what our results reveal about the character of the magnetic phases. Our first key result is a detailed H∥[001]H \parallel [001] magnetic phase diagram mapping the seven phases we observe. Second, we identify a new high-field phase, phase VII, which directly corresponds to the region were skyrmions have been suggested. Our results provide guidance for future studies exploring the complex magnetic interactions and spin structures in EuAl4_{4}.Comment: 20 pages, 15 figure

    Influence of the Rare-Earth Element on the Effects of the Structural and Magnetic Phase Transitions in CeFeAsO, PrFeAsO and NdFeAsO

    Get PDF
    We present results of transport and magnetic properties and heat capacity measurements on polycrystalline CeFeAsO, PrFeAsO and NdFeAsO. These materials undergo structural phase transitions, spin density wave-like magnetic ordering of small moments on iron and antiferromagnetic ordering of rare-earth moments. The temperature dependence of the electrical resistivity, Seebeck coefficient, thermal conductivity, Hall coefficient and magnetoresistance are reported. The magnetic behavior of the materials have been investigated using Mössbauer spectroscopy and magnetization measurements. Transport and magnetic properties are affected strongly by the structural and magnetic transitions, suggesting significant changes in the band structure and/or carrier mobilities occur, and phonon-phonon scattering is reduced upon transformation to the low-temperature structure. Results are compared with recent reports for LaFeAsO, and systematic variations in properties as the identity of Ln is changed are observed and discussed. As Ln progresses across the rare-earth series from La to Nd, an increase in the hole contributions to the Seebeck coefficient and increases in magnetoresistance and the Hall coefficient are observed in the low-temperature phase. Analysis of hyperfine fields at the iron nuclei determined from Mössbauer spectra indicates that the moment on Fe in the orthorhombic phase is nearly independent of the identity of Ln, in apparent contrast to reports of powder neutron diffraction refinements

    Direct Experimental Evidence for Atomic Tunneling of Europium in Crystalline Eu\u3csub\u3e8\u3c/sub\u3eGa\u3csub\u3e16\u3c/sub\u3eGe\u3csub\u3e30\u3c/sub\u3e

    Get PDF
    Mössbauer-effect and microwave absorption experimental evidence unambiguously demonstrates the presence of slow, ∼450  MHz, tunneling of magnetic europium between four equivalent sites in Eu8Ga16Ge30, a stoichiometric clathrate. Remarkably, six of the eight europium atoms, or 11% of the constituents in this solid, tunnel between these four sites separated by 0.55 Å. The off centering of the atoms or ions in crystalline clathrates appears to be a promising route for producing Rabi oscillators in solid-state materials

    The Grizzly, February 16, 1990

    Get PDF
    UC Fraternity Pledging: A New Era Begins • First Year Conflict and Creativity • Letter: Miffed Mother Says • Dando Joins Board of Directors • Scotland Scholarship Available • Track Tragedy • Hoops Split • Swimmers Look To MAC\u27s • Track Team Tops • Aquabears Splash Supreme • A.O.T.W • Trump: The Article • Monsters: Puppets\u27 Best • UC Hosts Championship • Errors To Be Performed • Ursinus Dryers Are All Wet • Organ Recitalhttps://digitalcommons.ursinus.edu/grizzlynews/1252/thumbnail.jp

    Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mossbauer spectra

    Get PDF
    We present results from a detailed experimental investigation of LaFeAsO, the parent material in the series of "FeAs" based oxypnictide superconductors. Upon cooling this material undergoes a tetragonal-orthorhombic crystallographic phase transition at ~160 K followed closely by an antiferromagnetic ordering near 145 K. Analysis of these phase transitions using temperature dependent powder X-ray and neutron diffraction measurements is presented. A magnetic moment of ~0.35 Bohr magnetons per iron is derived from Mossbauer spectra in the low temperature phase. Evidence of the structural transition is observed at temperatures well above the structural transition (up to near 200 K) in the diffraction data as well as the polycrystalline elastic moduli probed by resonant ultrasound spectroscopy measurements. The effects of the two phase transitions on the transport properties (resistivity, thermal conductivity, Seebeck coefficient, Hall coefficient), heat capacity, and magnetization of LaFeAsO are also reported, including a dramatic increase in the magnitude of the Hall coefficient below 160 K. The results suggest that the structural distortion leads to a localization of carriers on Fe, producing small local magnetic moments which subsequently order antiferromagnetically upon further cooling. Evidence of strong electron-phonon interactions in the high-temperature tetragonal phase is also observed.Comment: Revised and expanded magnetization and Mossbauer spectroscopy section. Clarified sample preparation description. This paper contains some results from arXiv:0804.0796. 10 figure
    • …
    corecore