20 research outputs found

    Tidal Conversion and Mixing Poleward of the Critical Latitude (an Arctic Case Study)

    Get PDF
    ©2017. American Geophysical Union. The tides are a major source of the kinetic energy supporting turbulent mixing in the global oceans. The prime mechanism for the transfer of tidal energy to turbulent mixing results from the interaction between topography and stratified tidal flow, leading to the generation of freely propagating internal waves at the period of the forcing tide. However, poleward of the critical latitude (where the period of the principal tidal constituent exceeds the local inertial period), the action of the Coriolis force precludes the development of freely propagating linear internal tides. Here we focus on a region of sloping topography, poleward of the critical latitude, where there is significant conversion of tidal energy and the flow is supercritical (Froude number, Fr > 1). A high-resolution nonlinear modeling study demonstrates the key role of tidally generated lee waves and supercritical flow in the transfer of energy from the barotropic tide to internal waves in these high-latitude regions. Time series of flow and water column structure from the region of interest show internal waves with characteristics consistent with those predicted by the model, and concurrent microstructure dissipation measurements show significant levels of mixing associated with these internal waves. The results suggest that tidally generated lee waves are a key mechanism for the transfer of energy from the tide to turbulence poleward of the critical latitude

    Arsenic metabolism, diabetes prevalence, and insulin resistance among Mexican Americans: A mendelian randomization approach

    Get PDF
    Background: Differences in arsenic metabolism capacity may influence risk for type 2 diabetes, but the mechanistic drivers are unclear. We evaluated the associations between arsenic metabolism with overall diabetes prevalence and with static and dynamic measures of insulin resistance among Mexican Americans living in Starr County, Texas. Methods: We utilized data from cross-sectional studies conducted in Starr County, Texas, from 2010-2014. A Mendelian randomization approach was utilized to evaluate the associations between arsenic metabolism and type 2 diabetes prevalence using the intronic variant in the arsenic methylating gene, rs9527, as the instrumental variable for arsenic metabolism. To further assess mechanisms for diabetes pathogenesis, proportions of the urinary arsenic metabolites were employed to assess the association between arsenic metabolism and insulin resistance among participants without diabetes. Urinary biomarkers of arsenic metabolites were modeled as individual proportions of the total. Arsenic metabolism was evaluated both with a static outcome of insulin resistance, homeostatic measure of assessment (HOMA-IR), and a dynamic measure of insulin sensitivity, Matsuda Index. Results: Among 475 Mexican American participants from Starr County, higher metabolism capacity for arsenic is associated with higher diabetes prevalence driven by worse insulin resistance. Presence of the minor T allele of rs9527 is independently associated with an increase in the proportion of monomethylated arsenic (MMA%) and is associated with an odds ratio of 0.50 (95% CI: 0.24, 0.90) for type 2 diabetes. This association was conserved after potential covariate adjustment. Furthermore, among participants without type 2 diabetes, the highest quartile of MMA% was associated with 22% (95% CI: -33.5%, -9.07%) lower HOMA-IR and 56% (95% CI: 28.3%, 91.3%) higher Matsuda Index for insulin sensitivity. Conclusions: Arsenic metabolism capacity, indicated by a lower proportion of monomethylated arsenic, is associated with increased diabetes prevalence driven by an insulin resistant phenotype among Mexican Americans living in Starr County, Texas

    The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins

    No full text
    The vast majority of wine fermentations are performed principally by Saccharomyces cerevisiae. However, there are a growing number of instances in which other species of Saccharomyces play a predominant role. Interestingly, the presence of these other yeast species generally occurs via the formation of interspecific hybrids that contain genomic contributions from both S. cerevisiae and non-S. cerevisiae species. However, despite the large number of wine strains that are characterized at the genomic level, there remains limited information regarding the detailed genomic structure of hybrids used in winemaking. To address this, we describe the genome sequence of the thiol-releasing commercial wine yeast hybrid VIN7. VIN7 is shown to be an almost complete allotriploid interspecific hybrid that is comprised of a heterozygous diploid complement of S. cerevisiae chromosomes and a haploid Saccharomyces kudriavzevii genomic contribution. Both parental strains appear to be of European origin, with the S. cerevisiae parent being closely related to, but distinct from, the commercial wine yeasts QA23 and EC1118. In addition, several instances of chromosomal rearrangement between S. cerevisiae and S. kudriavzevii sequences were observed that may mark the early stages of hybrid genome consolidation.Anthony R. Borneman, Brian A. Desany, David Riches, Jason P. Affourtit, Angus H. Forgan, Isak S. Pretorius, Michael Egholm & Paul J. Chamber
    corecore