17 research outputs found

    Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif

    Get PDF
    AbstractWhile the human antiretroviral defense factors APOBEC3F and APOBEC3G are potent inhibitors of the replication of HIV-1 mutants lacking a functional vif gene, the Vif protein expressed by wild-type HIV-1 blocks the function of both host cell proteins. Here, we report that a third human protein, APOBEC3B, is able to suppress the infectivity of both Vif-deficient and wild-type HIV-1 with equal efficiency. APOBEC3B, which shows ∼58% sequence identity to both APOBEC3F and APOBEC3G, shares the ability of these other human proteins to bind the nucleocapsid domain of HIV-1 Gag specifically and to thereby package into progeny virion particles. However, APOBEC3B differs from APOBEC3F and APOBEC3G in that it is unable to bind to HIV-1 Vif in co-expressing cells and is therefore efficiently packaged into HIV-1 virions regardless of Vif expression. Unfortunately, APOBEC3B also differs from APOBEC3F and APOBEC3G in that it is not normally expressed in the lymphoid cells that serve as targets for HIV-1 infection. These studies therefore raise the possibility that activation of the endogenous APOBEC3B gene in primary human lymphoid cells could form a novel and effective strategy for inhibition of HIV-1 replication in vivo

    Overexpression of Exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs

    No full text
    Plasmids or viral vectors that express short hairpin RNAs (shRNAs) have emerged as important tools for the stable inhibition of specific genes by RNA interference. shRNAs are structural and functional homologs of pre-microRNAs, intermediates in the production of endogenously encoded microRNAs (miRNAs). Therefore, overexpressed shRNAs could inhibit miRNA function by competing for a limiting level of one or more factors involved in miRNA biogenesis or function. Here, we demonstrate that overexpressed shRNAs can saturate the activity of endogenous Exportin 5, a factor required for nuclear export of both shRNAs and pre-miRNAs. While shRNA overexpression can therefore inhibit miRNA function, simultaneous overexpression of Exportin 5 reverses this effect. Moreover, Exportin 5 overexpression can significantly enhance RNA interference mediated by shRNAs. These data have implications for the future clinical utilization of shRNAs and also provide a simple method to enhance RNA interference by shRNAs in culture

    Human Immunodeficiency Virus Type 1 Mediates Global Disruption of Innate Antiviral Signaling and Immune Defenses within Infected Cellsâ–¿

    No full text
    Interferon regulatory factor 3 (IRF-3) is essential for innate intracellular immune defenses that limit virus replication, but these defenses fail to suppress human immunodeficiency virus (HIV) infection, which can ultimately associate with opportunistic coinfections and the progression to AIDS. Here, we examined antiviral defenses in CD4+ cells during virus infection and coinfection, revealing that HIV type 1 (HIV-1) directs a global disruption of innate immune signaling and supports a coinfection model through suppression of IRF-3. T cells responded to paramyxovirus infection to activate IRF-3 and interferon-stimulated gene expression, but they failed to mount a response against HIV-1. The lack of response associated with a marked depletion of IRF-3 but not IRF-7 in HIV-1-infected cells, which supported robust viral replication, whereas ectopic expression of active IRF-3 suppressed HIV-1 infection. IRF-3 depletion was dependent on a productive HIV-1 replication cycle and caused the specific disruption of Toll-like receptor and RIG-I-like receptor innate immune signaling that rendered cells permissive to secondary virus infection. IRF-3 levels were reduced in vivo within CD4+ T cells from patients with acute HIV-1 infection but not from long-term nonprogressors. Our results indicate that viral suppression of IRF-3 promotes HIV-1 infection by disrupting IRF-3-dependent signaling pathways and innate antiviral defenses of the host cell. IRF-3 may direct an innate antiviral response that regulates HIV-1 replication and viral set point while governing susceptibility to opportunistic virus coinfections

    The Betaretrovirus Mason-Pfizer Monkey Virus Selectively Excludes Simian APOBEC3G from Virion Particles

    No full text
    The APOBEC3 protein family can constitute a potent barrier to the successful infection of mammalian species by retroviruses. Therefore, any retrovirus that has evolved the ability to replicate in a given animal must have developed mechanisms that allow it to avoid or inhibit the APOBEC3 proteins expressed in that animal. Here, we demonstrate that Mason-Pfizer monkey virus (MPMV) is resistant to inhibition by the APOBEC3G protein expressed in its normal host, the rhesus macaque, but highly susceptible to inhibition by murine APOBEC3 (mA3). MPMV virion particles fail to package rhesus APOBEC3G (rA3G), and MPMV Gag binds rA3G poorly in coexpressing cells. In contrast, MPMV virions package mA3 efficiently and MPMV Gag-mA3 complexes are readily detected. Moreover, mA3, but not rA3G, partially colocalizes with MPMV Gag in the cytoplasm of coexpressing cells. Previously, we have demonstrated that murine leukemia virus also escapes inhibition by APOBEC3 proteins by avoiding virion incorporation of its cognate APOBEC3 protein, mA3, yet is inhibited by primate APOBEC3G proteins, which it packages effectively (B. P. Doehle, A. Schäfer, H. L. Wiegand, H. P. Bogerd, and B. R. Cullen, J. Virol. 79:8201-8207, 2005). The finding that two essentially unrelated beta- and gammaretroviruses use similar mechanisms to escape inhibition by the APOBEC3 proteins found in their normal host species suggests that the selective exclusion of APOBEC3 proteins from virion particles may be a general mechanism used by simple mammalian retroviruses

    A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins

    No full text
    The HIV-1 Vif protein suppresses the inhibition of viral replication caused by the human antiretroviral factor APOBEC3G. As a result, HIV-1 mutants that do not express the Vif protein are replication incompetent in ‘nonpermissive' cells, such as primary T cells and the T-cell line CEM, that express APOBEC3G. In contrast, Vif-defective HIV-1 replicates effectively in ‘permissive' cell lines, such as a derivative of CEM termed CEM-SS, that do not express APOBEC3G. Here, we show that a second human protein, APOBEC3F, is also specifically packaged into HIV-1 virions and inhibits their infectivity. APOBEC3F binds the HIV-1 Vif protein specifically and Vif suppresses both the inhibition of virus infectivity caused by APOBEC3F and virion incorporation of APOBEC3F. Surprisingly, APOBEC3F and APOBEC3G are extensively coexpressed in nonpermissive human cells, including primary lymphocytes and the cell line CEM, where they form heterodimers. In contrast, both genes are quiescent in the permissive CEM derivative CEM-SS. Together, these data argue that HIV-1 Vif has evolved to suppress at least two distinct but related human antiretroviral DNA-editing enzymes
    corecore