1,643 research outputs found

    Progress toward a Soft X-ray Polarimeter

    Full text link
    We are developing instrumentation for a telescope design capable of measuring linear X-ray polarization over a broad-band using conventional spectroscopic optics. Multilayer-coated mirrors are key to this approach, being used as Bragg reflectors at the Brewster angle. By laterally grading the multilayer mirrors and matching to the dispersion of a spectrometer, one may take advantage of high multilayer reflectivities and achieve modulation factors over 50% over the entire 0.2-0.8 keV band. We present progress on laboratory work to demonstrate the capabilities of an existing laterally graded multilayer coated mirror pair. We also present plans for a suborbital rocket experiment designed to detect a polarization level of 12-17% for an active galactic nucleus in the 0.1-1.0 keV band.Comment: 11 pages, 12 figures, to appear in the proceedings of the SPIE, volume 8861, on Optics for EUV, X-Ray, and Gamma-Ray Astronom

    Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1

    Get PDF
    During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.This work was supported by an Australian NHMRC Overseas Biomedical Postdoctoral Fellowship (to I.A. Parish); a Yale School of Medicine Brown-Coxe Postdoctoral Fellowship (to I.A. Parish); the Alexander von Humboldt Foundation (SKA2010, to P.A. Lang); a CIHR grant (to P.S. Ohashi); and by the Howard Hughes Medical Institute and NIH grant RO1AI074699 (to S.M. Kaech). P.S. Ohashi holds a Canada Research Chair in Autoimmunity and Tumor immunity

    Caspase-dependent signaling underlies glioblastoma cell death in response to the fungal metabolite, fusarochromanone

    Get PDF
    Fungal metabolites continue to show promise as a viable class of anticancer agents. In the present study, we investigated the efficacy of the fungal metabolite, fusarochromanone (FC101), for its antitumor activities in glioblastomas, which have a median survival of less than two years and a poor clinical response to surgical resection, radiation therapy and chemotherapy. Using clinically applicable doses, we demonstrated that FC101 induced glioblastoma apoptotic cell death via caspase dependent signaling, as indicated by the cleavage of poly(ADP-ribose) polymerase, glioblastoma (PARP). FC101 also induced differential reactive oxygen species (ROS) levels in glioblastoma cells, contrasting a defined role of oxidative stress in apoptotic cell death observed with other fungal metabolites. Furthermore, the antitumorigenic effects of FC101 on tumor cell migration were assessed. Cell migration assays revealed that FC101 significantly reduced the migratory capacity of glioblastomas, which are incredibly invasive tumors. Taken together, the present study establishes FC101 as a candidate anticancer agent for the cooperative treatment of glioblastomas

    Glucocorticoid-Mediated Inhibition of Angiogenic Changes in Human Endothelial Cells Is Not Caused by Reductions in Cell Proliferation or Migration

    Get PDF
    Glucocorticoid-mediated inhibition of angiogenesis is important in physiology, pathophysiology and therapy. However, the mechanisms through which glucocorticoids inhibit growth of new blood vessels have not been established. This study addresses the hypothesis that physiological levels of glucocorticoids inhibit angiogenesis by directly preventing tube formation by endothelial cells.Cultured human umbilical vein (HUVEC) and aortic (HAoEC) endothelial cells were used to determine the influence of glucocorticoids on tube-like structure (TLS) formation, and on cellular proliferation (5-bromo-2'-deoxyuridine (BrdU) incorporation), viability (ATP production) and migration (Boyden chambers). Dexamethasone or cortisol (at physiological concentrations) inhibited both basal and prostaglandin F(2α) (PGF(2α))-induced and vascular endothelial growth factor (VEGF) stimulated TLS formation in endothelial cells (ECs) cultured on Matrigel, effects which were blocked with the glucocorticoid receptor antagonist RU38486. Glucocorticoids had no effect on EC viability, migration or proliferation. Time-lapse imaging showed that cortisol blocked VEGF-stimulated cytoskeletal reorganisation and initialisation of tube formation. Real time PCR suggested that increased expression of thrombospodin-1 contributed to glucocorticoid-mediated inhibition of TLS formation.We conclude that glucocorticoids interact directly with glucocorticoid receptors on vascular ECs to inhibit TLS formation. This action, which was conserved in ECs from two distinct vascular territories, was due to alterations in cell morphology rather than inhibition of EC viability, migration or proliferation and may be mediated in part by induction of thrombospodin-1. These findings provide important insights into the anti-angiogenic action of endogenous glucocorticoids in health and disease

    Obtaining New Insights for Biodiversity Conservation from Broad-Scale Citizen Science Data

    Get PDF
    Increasing public engagement in volunteer science1, either through data collection2 or processing3, is both raising public awareness of science and gathering useful information for scientists. While the payoffs of citizen science4 are potentially large, achieving them requires new approaches to data management and analysis that can only result from strong cross-disciplinary collaborations. This is especially true in ecology and conservation biology, where historically the understanding of species’ responses to environmental change has been constrained by the limited spatial5 or temporal scale6 of available data. Here we describe collaborative research in ecology, computer science, and statistics to generate essential information for conservation management of North American birds: accurate dynamic bird distributions models based on habitat associations across much of North America. Unique is our ability to describe the broad-scale dynamics of seasonal bird distributions and the associated seasonal patterns of habitat use. Our source of bird distribution data is eBird7, an online bird checklist program that currently gathers more than 74,000 checklists monthly from a large network of contributors. Our results were made possible through a data intensive scientific workflow8 that includes analytical methods merged from the fields of machine learning and statistics. We believe that this novel approach of data collection, synthesis, analysis, and visualization will serve as a hallmark for future research initiatives, with broad applicability across many scientific domains

    The fate of indeterminate liver lesions: What proportion are precursors of hepatocellular carcinoma?

    Get PDF
    BACKGROUND: The natural history and incidence of hepatocellular carcinoma (HCC) arising from indeterminate liver lesions are not well described. We aimed to define the incidence of HCC in a cohort of patients undergoing surveillance by magnetic resonance imaging (MRI) and estimate any associations with incident HCC. METHODS: We performed a retrospective follow-up study, identifying MRI scans in which indeterminate lesions had been reported between January 2006 and January 2017. Subsequent MRI scan reports were reviewed for incident HCC arising from indeterminate lesions, data were extracted from electronic patient records and survival analysis performed to estimate associations with baseline factors. RESULTS: One hundred and nine patients with indeterminate lesions on MRI were identified. HCC developed in 19 (17%) patients over mean follow up of 4.6 years. Univariate Cox proportional hazards analysis found incident HCC to be significantly associated with baseline low platelet count (hazard ratio (HR) = 7.3 (95% confidence intervals (CI) 2.1-24.9), high serum alpha-fetoprotein level (HR = 2.7 (95% CI 1.0-7.1)) and alcohol consumption above fourteen units weekly (HR = 3.1 (95% CI 1.1-8.7)). Multivariate analysis, however, found that only low platelet count was independently associated with HCC (HR = 5.5 (95% CI 0.6-5.1)). CONCLUSIONS: HCC arises in approximately one fifth of indeterminate liver lesions over 4.6 years and is associated with a low platelet count at the time of first diagnosis of an indeterminate lesion. Incidence of HCC was more common in people with viral hepatitis and in those consuming > 14 units of alcohol per week. Our data may be used to support a strategy of enhanced surveillance in patients with indeterminate lesions

    Stochastic virtual tests for fiber composites

    Get PDF
    We will describe a Virtual Test system for continuous fiber composites. The virtual test draws from a new wave of advanced experiments and theory that address physical, mathematical, and engineering aspects of material definition and failure prediction. The methods go far beyond currently standard tests and conventional FEM analysis to challenge our conception of what can constitute a practicable engineering approach. Emphasis will be given to high temperature ceramic matrix composites with textile reinforcement, which have been the subject material of the National Hypersonic Science Center, Materials and Structures, a joint AFOSR/NASA program. However, thematic topics also address generic fiber composites. Development has been organized as a “pipeline” that links the separate disciplinary efforts of groups housed in seven institutions spread across the United States. The main research steps are: high resolution three-dimensional (3D) imaging of the microstructure, statistical characterization of the microstructure, formulation of a probabilistic generator for creating virtual specimens that replicate the measured statistics, creation of a computational model for a virtual specimen that allows general representation of discrete damage events, calibration of the model using room and high temperature tests, simulation of failure, and model validation. Key new experiments include digital surface image correlation and µm-resolution 3D computed tomography imaging of the microstructure and evolving damage, both executed at temperatures exceeding 1500°C. Conceptual advances include using both geometry and topology to characterize stochastic microstructures. Computational methods include new probabilistic algorithms for generating stochastic virtual specimens and a new Augmented Finite Element Method that yields extreme efficiency in dealing with arbitrary cracking in heterogeneous materials. The challenge of relating variance in engineering properties to stochastic microstructure in a computationally tractable manner, while retaining necessary physical details in models, will be discussed
    corecore