5 research outputs found

    Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation

    No full text
    Nerve regeneration after injury is a critical medical issue. In previous work, we have developed an oligo­(poly­(ethylene glycol) fumarate) (OPF) hydrogel incorporated with positive charges as a promising nerve conduit. In this study, we introduced cross-linkable bonds to graphene oxide and carbon nanotube to obtain the functionalized graphene oxide acrylate (GOa) and carbon nanotube poly­(ethylene glycol) acrylate (CNTpega). An electrically conductive hydrogel was then fabricated by covalently embedding GOa and CNTpega within OPF hydrogel through chemical cross-linking followed by <i>in situ</i> reduction of GOa in l-ascorbic acid solution. Positive charges were incorporated by 2-(methacryloyl­oxy)­ethyl­trimethyl­ammonium chloride (MTAC) to obtain rGOaCNTpega-OPF-MTAC composite hydrogel with both surface charge and electrical conductivity. The distribution of CNTpega and GOa in the hydrogels was substantiated by transmission electron microscopy (TEM), and strengthened electrical conductivities were determined. Excellent biocompatibility was demonstrated for the carbon embedded composite hydrogels. Biological evaluation showed enhanced proliferation and spreading of PC12 cells on the conductive hydrogels. After induced differentiation using nerve growth factor (NGF), cells on the conductive hydrogels were effectively stimulated to have robust neurite development as observed by confocal microscope. A synergistic effect of electrical conductivity and positive charges on nerve cells was also observed in this study. Using a glass mold method, the composite hydrogel was successfully fabricated into conductive nerve conduits with surficial positive charges. These results suggest that rGOa-CNTpega-OPF-MTAC composite hydrogel holds great potential as conduits for neural tissue engineering

    Promoting Neuronal Outgrowth Using Ridged Scaffolds Coated with Extracellular Matrix Proteins

    No full text
    Spinal cord injury (SCI) results in cell death, demyelination, and axonal loss. The spinal cord has a limited ability to regenerate, and current clinical therapies for SCI are not effective in helping promote neurologic recovery. We have developed a novel scaffold biomaterial that is fabricated from the biodegradable hydrogel oligo(poly(ethylene glycol)fumarate) (OPF). We have previously shown that positively charged OPF scaffolds (OPF+) in an open spaced, multichannel design can be loaded with Schwann cells to support axonal generation and functional recovery following SCI. We have now developed a hybrid OPF+ biomaterial that increases the surface area available for cell attachment and that contains an aligned microarchitecture and extracellular matrix (ECM) proteins to better support axonal regeneration. OPF+ was fabricated as 0.08 mm thick sheets containing 100 μm high polymer ridges that self-assemble into a spiral shape when hydrated. Laminin, fibronectin, or collagen I coating promoted neuron attachment and axonal outgrowth on the scaffold surface. In addition, the ridges aligned axons in a longitudinal bipolar orientation. Decreasing the space between the ridges increased the number of cells and neurites aligned in the direction of the ridge. Schwann cells seeded on laminin coated OPF+ sheets aligned along the ridges over a 6-day period and could myelinate dorsal root ganglion neurons over 4 weeks. This novel scaffold design, with closer spaced ridges and Schwann cells, is a novel biomaterial construct to promote regeneration after SCI
    corecore