43 research outputs found
Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group.
BackgroundNew prognostic markers are needed to identify patients with Ewing sarcoma (EWS) and osteosarcoma unlikely to benefit from standard therapy. We describe the incidence and association with outcome of circulating tumour DNA (ctDNA) using next-generation sequencing (NGS) assays.MethodsA NGS hybrid capture assay and an ultra-low-pass whole-genome sequencing assay were used to detect ctDNA in banked plasma from patients with EWS and osteosarcoma, respectively. Patients were coded as positive or negative for ctDNA and tested for association with clinical features and outcome.ResultsThe analytic cohort included 94 patients with EWS (82% from initial diagnosis) and 72 patients with primary localised osteosarcoma (100% from initial diagnosis). ctDNA was detectable in 53% and 57% of newly diagnosed patients with EWS and osteosarcoma, respectively. Among patients with newly diagnosed localised EWS, detectable ctDNA was associated with inferior 3-year event-free survival (48.6% vs. 82.1%; pâ=â0.006) and overall survival (79.8% vs. 92.6%; pâ=â0.01). In both EWS and osteosarcoma, risk of event and death increased with ctDNA levels.ConclusionsNGS assays agnostic of primary tumour sequencing results detect ctDNA in half of the plasma samples from patients with newly diagnosed EWS and osteosarcoma. Detectable ctDNA is associated with inferior outcomes
An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma
The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment
S-glutathionylation activates STIM1 and alters mitochondrial homeostasis
Oxidant stress induces constitutive calcium entry by tacking glutathiones onto the Orai CRAC channel activator STIM1
Reversible severe combined immunodeficiency phenotype secondary to a mutation of the proton-coupled folate transporter
Hereditary folate malabsorption is a rare inborn error of metabolism due to mutations in the proton-coupled folate transporter (PCFT). Clinical presentation of PCFT deficiency may mimic severe combined immune deficiency (SCID). We report a 4-month-old female who presented with failure to thrive, normocytic anemia, Pneumocystis jirovecii pneumonia and systemic cytomegalovirus infection. Immunological evaluation revealed hypogammaglobulinemia, absent antibody responses, and lack of mitogen-induced lymphocyte proliferative responses. However, the absolute number and distribution of lymphocyte subsets, including naive T cells and recent thymic emigrants, were normal, arguing against primary SCID. Serum and cerebrospinal fluid folate levels were undetectable. A homozygous 1082-1G\u3eA mutation of the PCFT gene was found, resulting in skipping of exon 3. Parenteral folinic acid repletion resulted in normalization of anemia, humoral and cellular immunity, and full clinical recovery. PCFT mutations should be considered in infants with SCID-like phenotype, as the immunodeficiency is reversible with parenteral folinic acid repletion
Blood collection in cell-stabilizing tubes does not impact germline DNA quality for pediatric patients.
Liquid biopsy technologies allow non-invasive tumor profiling for patients with solid tumor malignancies by sequencing circulating tumor DNA. These studies may be useful in risk-stratification, monitoring for relapse, and understanding tumor evolution. The quality of DNA obtained for these studies is improved when blood samples are collected in tubes that stabilizing white blood cells (WBC). However, ongoing germline research in pediatric oncology generally requires obtaining blood samples in EDTA tubes, which do not contain a WBC-stabilizing preservative. In this study, we explored whether blood samples collected in WBC-stabilizing tubes could be used for both liquid biopsy and germline studies simultaneously, minimizing blood collection volumes for pediatric patients.Blood was simultaneously collected from three patients in both EDTA and Streck Cell-Free DNA BCTÂź tubes. Germline DNA was extracted from all blood samples and subjected to whole-exome sequencing and microarray profiling.Quality control metrics of DNA quality, sequencing library preperation and whole-exome sequencing alignment were virtually identical regardless of the sample collection method. There was no discernable difference in patterns of variant calling for paired samples by either whole-exome sequencing or microarray analysis.Our study demonstrates that high-quality genomic studies may be performed from germline DNA obtained in Streck tubes. Therefore, these tubes may be used to simultaneously obtain samples for both liquid biopsy and germline studies in pediatric patients when the volume of blood available for research studies may be limited
Circulating Tumor DNA as a Biomarker in Patients With Stage III and IV Wilms Tumor: Analysis From a Children\u27s Oncology Group Trial, AREN0533
PURPOSE: The utility of circulating tumor DNA (ctDNA) analyses has not been established in the risk stratification of Wilms tumor (WT). We evaluated the detection of ctDNA and selected risk markers in the serum and urine of patients with WT and compared findings with those of matched diagnostic tumor samples. PATIENTS AND METHODS: Fifty of 395 children with stage III or IV WT enrolled on Children\u27s Oncology Group trial AREN0533 had banked pretreatment serum, urine, and tumor available. Next-generation sequencing was used to detect ctDNA. Copy-number changes in 1q, 16q, and 1p, and single-nucleotide variants in serum and urine were compared with tumor biopsy data. Event-free survival (EFS) was compared between patients with and without ctDNA detection. RESULTS: ctDNA was detected in the serum of 41/50 (82%) and in the urine in 13/50 (26%) patients. Agreement between serum ctDNA detection and tumor sequencing results was as follows: 77% for 1q gain, 88% for 16q deletions, and 70% for 1p deletions, with Äž-coefficients of 0.56, 0.74, and 0.29, respectively. Sequencing also demonstrated that single-nucleotide variants detected in tumors could be identified in the ctDNA. There was a trend toward worse EFS in patients with ctDNA detected in the serum (4-year EFS 80% 100%, = .14). CONCLUSION: ctDNA demonstrates promise as an easily accessible prognostic biomarker with potential to detect tumor heterogeneity. The observed trend toward more favorable outcome in patients with undetectable ctDNA requires validation. ctDNA profiling should be further explored as a noninvasive diagnostic and prognostic tool in the risk-adapted treatment of patients with WT