2 research outputs found

    Optical chemical barcoding based on polarization controlled plasmonic nanopixels

    No full text
    Plasmonic devices offer the possibility of passively detecting changes in local chemistry that opens up a wide range of applications from molecular sensing to monitoring water quality. Conventional plasmonics have previously shown great promise as nanoscale chemical sensors through detection of small variations in the local refractive index (RI). The motivation behind using plasmonics for these applications includes the fact that detection is entirely passive and the devices themselves can be readily miniaturized. Previously, a lack of any control over the output of these devices, has fundamentally limited their application to chemicals which produce clearly identifiable resonances within the range of detection. Here it is demonstrated that microfluidic devices, incorporating polarization-controlled plasmonic nanopixels, allow the device response to be tuned to the particular analyte of interest, anywhere within the visible spectrum. This dramatically increases the effective dynamic range and allows local variations in RI to be perceived directly as color changes by the human eye. Active control over the output of the device also enables clear differentiation between a number of different analytes, paving the way for plasmonics to be used for a wide range of real-world chemical sensing applications

    Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers

    No full text
    The European X-ray Free Electron Laser (XFEL) and Linac Coherent Light Source (LCLS) II are extremely intense sources of X-rays capable of generating Serial Femtosecond Crystallography (SFX) data at megahertz (MHz) repetition rates. Previous work has shown that it is possible to use consecutive X-ray pulses to collect diffraction patterns from individual crystals. Here, we exploit the MHz pulse structure of the European XFEL to obtain two complete datasets from the same lysozyme crystal, first hit and the second hit, before it exits the beam. The two datasets, separated by <1 µs, yield up to 2.1 Å resolution structures. Comparisons between the two structures reveal no indications of radiation damage or significant changes within the active site, consistent with the calculated dose estimates. This demonstrates MHz SFX can be used as a tool for tracking sub-microsecond structural changes in individual single crystals, a technique we refer to as multi-hit SFX
    corecore