78 research outputs found
Lepidoptera Recorded From the Islands of Western Lake Erie, With a Brief Account of Geology and Flora
A list of Lepidoptera from the islands of western Lake Erie is presented along with a brief account of the geology, flora, and human activities in the area. The checklist contains 169 species representing 27 families. Suggestions are made for the improvement of this preliminary checklist as well as for future research
Influence of Honey Bee, Apis mellifera, Hives and Field Size on Foraging Activity of Native Bee Species in Pumpkin Fields
The purpose of this study was to identify bee species active in pumpkin fields in New York and to estimate their potential as pollinators by examining their foraging activity. In addition, we examined whether foraging activity was affected by either the addition of hives of the honey bee, Apis mellifera L., or by field size. Thirty-five pumpkin (Cucurbita spp.) fields ranging from 0.6 to 26.3 ha, 12 supplemented with A. mellifera hives and 23 not supplemented, were sampled during peak flowering over three successive weeks in 2008 and 2009. Flowers from 300 plants per field were visually sampled for bees on each sampling date. A. mellifera, Bombus impatiens Cresson, and Peponapis pruinosa (Say) accounted for 99% of all bee visits to flowers. A. mellifera and B. impatiens visited significantly more pistillate flowers than would be expected by chance, whereas P. pruinosa showed no preference for visiting pistillate flowers. There were significantly more A. mellifera visits per flower in fields supplemented with A. mellifera hives than in fields not supplemented, but there were significantly fewer P. pruinosa visits in supplemented fields. The number of B. impatiens visits was not affected by supplementation, but was affected by number of flowers per field. A. mellifera and P. pruinosa visits were not affected by field size, but B. impatiens visited fewer flowers as field size increased in fields that were not supplemented with A. mellifera hives. Declining A. mellifera populations may increase the relative importance of B. impatiens in pollinating pumpkins in New Yor
Using Yellow Rocket as a Trap Crop for Diamondback Moth (Lepidoptera: Plutellidae)
Yellow rocket, Barbarea vulgaris (R. Br.) variety arcuata, was evaluated as a trap crop for diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), in cabbage, Brassica oleracea L. variety capitata, in 2003 and 2004. In 2003, the numbers of P. xylostella larvae found in field plots of cabbage alone were 5.2-11.3 times higher than those on cabbage plants in plots that included cabbage and several rows of yellow rocket. In an outdoor experiment in screenhouses, P. xylostella oviposition on cabbage was compared among six treatments that varied in the percentage of yellow rocket in relation to cabbage (0, 4, 8, 16, 24, and 32% of the plants were yellow rocket). Results indicated that the percentage of eggs laid on cabbage decreased as the percentage of yellow rocket in the treatment increased, but this decrease was not significant beyond 20% of the plants being yellow rocket. In 2004, the numbers of P. xylostella larvae in field plots of cabbage alone were 1.6-2.4 and 1.7-2.8 times higher than numbers in treatments with 10 and 20% trap crop, respectively. Sticky trap and sweep net captures of P. xylostella adults indicated that within-field dispersal was reduced by the presence of yellow rocket and aggregation occurred around yellow rocket plants. Our study suggests that using yellow rocket as a trap crop may reduce P. xylostella infestations in cabbage fields, and this possibility is discussed in the context of general crop and insect pest management practices in crucifer
Manipulating the Attractiveness and Suitability of Hosts for Diamondback Moth (Lepidoptera: Plutellidae)
Ovipositional preference and larval survival of the diamondback moth, Plutella xylostella (L.), were compared among cabbage, Brassica oleracea L. variety capitata; glossy collards, Brassica oleracea L. variety acephala; and yellow rocket, Barbarea vulgaris (R. Br.) variety arcuata in different treatments of planting density, host plant age, intercropping, and water stress in 2003 and 2004. P. xylostella laid nearly twice as many eggs per plant in the high planting densities of glossy collards and yellow rocket than in the standard planting densities. Ovipositional preference was positively correlated with plant age in cabbage, glossy collards, and yellow rocket. Larval survival on cabbage was 1.9 times higher on 6-wk than on 12-wk-old plants, whereas larval survival on collards was 12.1 times higher on the younger plants. No larvae survived on either 6- or 12-wk-old yellow rocket plants. Intercropping cabbage with either tomato, Lycopersicon esculentum Mill., or fava bean, Vicia fava L., did not reduce the number of eggs laid on cabbage. No significant differences in oviposition were found between water-stressed and well-irrigated host plants treatments. Yet, P. xylostella larval survival on water-stressed cabbage was 2.1 times lower than on well-irrigated cabbage plants. Based on our findings, the effectiveness of trap crops of glossy collards and yellow rocket could be enhanced by integrating the use of higher planting densities in the trap crop than in the main crop and seeding of the trap crop earlier than the main cro
Seasonal and Spatial Dynamics of Alate Aphid Dispersal in Snap Bean Fields in Proximity to Alfalfa and Implications for Virus Management
Alfalfa is a source for viruses that may be acquired by aphids and transmitted to snap bean, Phaseolus vulgaris L. Snap bean fields in proximity to alfalfa could have an increased risk of virus infection. Knowledge of the abundance and temporal and spatial dispersal patterns of commonly encountered aphids in commercial snap bean fields, varying in distance from alfalfa, could provide insight into this risk. Alate aphids were monitored using water pan traps in snap bean and alfalfa fields that were adjacent to or >1 km away from each other. The pea aphid, Acyrthosiphon pisum (Harris), was the most common aphid species captured in early-planted snap bean fields in 2002 and 2003 (56 and 23% of total, respectively), whereas the corn leaf aphid, Rhopalosiphum maidis (Fitch), also was common in 2003 (15% of total). In contrast, the yellow clover aphid, Therioaphis trifolii (Monell), and soybean aphid, Aphis glycines Matsumura, were the most abundant species trapped in late-planted snap bean fields in 2002 (77% of total) and 2003 (64% of total), respectively. These species were prevalent in traps in alfalfa as well. The abundance and temporal dispersal patterns of these species in snap beans adjacent to and >1 km away from alfalfa were similar, suggesting that the risk for virus infection may not be affected by proximity to alfalfa. A similar number of alate aphids also were captured along snap bean field edges and field centers, regardless of their proximity to alfalfa. This suggests that the aphids dispersed into snap bean randomly rather than directionally from the field edge. The implication of these results is that separating snap bean fields from alfalfa or using crop borders/barriers are not likely to be successful virus management strategie
Temperature and Precipitation Affect Seasonal Patterns of Dispersing Tobacco Thrips, Frankliniella fusca, and Onion Thrips, Thrips tabaci (Thysanoptera: Thripidae) Caught on Sticky Traps
Effects of temperature and precipitation on the temporal patterns of dispersing tobacco thrips, Frankliniella fusca, and onion thrips, Thrips tabaci, caught on yellow sticky traps were estimated in central and eastern North Carolina and eastern Virginia from 1997 through 2001. The impact that these environmental factors had on numbers of F. fusca and T. tabaci caught on sticky traps during April and May was determined using stepwise regression analysis of 43 and 38 site-years of aerial trapping data from 21 and 18 different field locations, respectively. The independent variables used in the regression models included degree-days, total precipitation, and the number of days in which precipitation occurred during January through May. Each variable was significant in explaining variation for both thrips species and, in all models, degree-days was the single best explanatory variable. Precipitation had a comparatively greater effect on T. tabaci than F. fusca. The numbers of F. fusca and T. tabaci captured in flight were positively related to degree-days and the number of days with precipitation but negatively related to total precipitation. Combined in a single model, degree-days, total precipitation, and the number of days with precipitation explained 70 and 55% of the total variation in the number of F. fusca captured from 1 April through 10 May and from 1 April through 31 May, respectively. Regarding T. tabaci flights, degree-days, total precipitation, and the number of days with precipitation collectively explained 57 and 63% of the total variation in the number captured from 1 April through 10 May and from 1 April through 31 May, respectivel
Temporal Dynamics of Iris Yellow Spot Virus and Its Vector, Thrips tabaci (Thysanoptera: Thripidae), in Seeded and Transplanted Onion Fields
Onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), can reduce onion bulb yield and transmit iris yellow spot virus (IYSV) (Bunyaviridae: Tospovirus), which can cause additional yield losses. In New York, onions are planted using seeds and imported transplants. IYSV is not seed transmitted, but infected transplants have been found in other U.S. states. Transplants are also larger than seeded onions early in the season, and thrips, some of which may be viruliferous, may preferentially colonize larger plants. Limited information is available on the temporal dynamics of IYSV and its vector in onion fields. In 2007 and 2008, T. tabaci and IYSV levels were monitored in six seeded and six transplanted fields. We found significantly more thrips in transplanted fields early in the season, but by the end of the season seeded fields had higher levels of IYSV. The percentage of sample sites with IYSV-infected plants remained low (<12%) until August, when infection levels increased dramatically in some fields. The densities of adult and larval thrips in August and September were better predictors of final IYSV levels than early season thrips densities. For 2007 and 2008, the time onions were harvested may have been more important in determining IYSV levels than whether the onions were seeded or transplanted. Viruliferous thrips emigrating from harvested onion fields into nonharvested ones may be increasing the primary spread of IYSV in late-harvested onions. Managing T. tabaci populations before harvest, and manipulating the spatial arrangement of fields based on harvest date could mitigate the spread of IYS
Characterization of Resistance, Evaluation of the Attractiveness of Plant Odors, and Effect of Leaf Color on Different Onion Cultivars to Onion Thrips (Thysanoptera: Thripidae)
Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is a worldwide pest of onion, Allium cepa L. In field studies on onion resistance conducted in 2007 and 2008 using 49 cultivars, 11 showed low leaf damage by T. tabaci. In laboratory studies, the 11 cultivars, along with two susceptible checks and four additional cultivars, were evaluated to characterize resistance to T. tabaci and to determine if color and/or light reflectance were associated with resistance to T. tabaci. No-choice tests were performed with adults and the numbers of eggs and larvae were counted on each cultivar after three and 10 d, respectively. In choice tests in which all cultivars were planted together in a circle in a single pot, 100 adults were released and the number of adults on each plant was evaluated 24 h later. The behavioral response of walking T. tabaci adults to plant odors was studied in a glass Y-tube olfactometer. The reflectance spectrum of leaves was measured using a UV-VIS spectrophotometer. Results indicate that resistant cultivars showed an intermediate-high antibiotic effect to T. tabaci and all of them showed a very strong antixenotic effect. There were no significant preferences in the response of walking T. tabaci adults to plant odors. The two susceptible cultivars had the highest values of leaf reflectance for the first (275-375 nm) and second (310-410 nm) theoretical photopigment-system of T. tabaci, and these values were significantly different from most resistant cultivars. These results suggest a strong response of T. tabaci to onion cultivars with higher reflectance in the ultraviolet range (270-400 nm). Overall, these results appear promising in helping to identify categories of resistance to T. tabaci in onions that can be used in breeding program
- …