28 research outputs found

    Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells

    Get PDF
    International audienceMicrotubules (MTs) play an important role in many cellular processes and are dynamic structures regulated by an important network of microtubules-associated proteins, MAPs, such as Tau. Tau has been discovered as an essential factor for MTs formation in vitro, and its region implicated in binding to MTs has been identified. By contrast, the affinity, the stoichiometry, and the topology of Tau-MTs interaction remain controversial. Indeed, depending on the experiment conditions a wide range of values have been obtained. In this chapter, we focus on three biophysical methods, turbidimetry, cosedimentation assay, and Förster Resonance Energy Transfer to study Tau-tubulin interaction both in vitro and in cell. We highlight precautions that must be taken in order to avoid pitfalls and we detail the nature of the conclusions that can be drawn from these methods about Tau-tubulin interaction

    The histone deacetylase inhibitor trichostatin A downregulates human MDR1 (ABCB1) gene expression by a transcription-dependent mechanism in a drug-resistant small cell lung carcinoma cell line model

    Get PDF
    Tumour drug-resistant ABCB1 gene expression is regulated at the chromatin level through epigenetic mechanisms. We examined the effects of the histone deacetylase inhibitor trichostatin A (TSA) on ABCB1 gene expression in small cell lung carcinoma (SCLC) drug-sensitive (H69WT) or etoposide-resistant (H69VP) cells. We found that TSA induced an increase in ABCB1 expression in drug-sensitive cells, but strongly decreased it in drug-resistant cells. These up- and downregulations occurred at the transcriptional level. Protein synthesis inhibition reduced these modulations, but did not completely suppress them. Differential temporal patterns of histone acetylation were observed at the ABCB1 promoter: increase in H4 acetylation in both cell lines, but different H3 acetylation with a progressive increase in H69WT cells but a transient one in H69VP cells. ABCB1 regulations were not related with the methylation status of the promoter −50GC, −110GC, and Inr sites, and did not result in further changes to these methylation profiles. Trichostatin A treatment did not modify MBD1 binding to the ABCB1 promoter and similarly increased PCAF binding in both H69 cell lines. Our results suggest that in H69 drug-resistant SCLC cell line TSA induces downregulation of ABCB1 expression through a transcriptional mechanism, independently of promoter methylation, and MBD1 or PCAF recruitment

    Potential role of the neuropeptide CGRP in the induction of differentiation of rat hepatic portal vein wall

    No full text
    The media of the rat hepatic portal vein is composed of an internal circular muscular layer (CL) and an external longitudinal muscular layer (LL). These two perpendicular layers differentiate progressively from mesenchymal cells within the first month after birth. In this paper, we studied the development of calcitonin gene-related peptide (CGRP) innervation during post-natal differentiation of the vessel. We show that CGRP innervation is already present around the vessel at birth in the future adventitia but far from the lumen of the vessel. Progressively, CGRP immunoreactive fibers reached first LL then CL. CL by itself become only innervated at day 14 after birth. This corresponds to the time at which thick filaments (myosin) are visible in electron microscopy and desmin visualisable by immunocytochemistry. Furthermore, we provide evidence by autoradiography, that binding sites for CGRP are transiently expressed on the portal vein media at day 1 and 14 after birth. Vascular smooth muscle cells were transfected with constructs containing promoters for desmin or smooth muscle myosin heavy chain (smMHC). CGRP treatment of the cells significantly increased the expression of smMHC. Overall these results suggest that CGRP can potentially influence the differentiation of smooth muscle cells from the vessel wall

    Cytotoxicity, cellular uptake, and DNA interactions of new monodentate ruthenium(II) complexes containing terphenyl arenes

    No full text
    We have compared the cancer cell cytotoxicity, cell uptake., and DNA binding properties of the isomeric terphenyl complexes [(eta(6)-arene)Ru(en)Cl](+), where the arene is ortho- (2), meta- (3), or para-terphenyl (1) (o-, m-, or p-terp). Complex 1, the X-ray crystal structure of which confirms that it has the classical "piano-stool" geometry, has a similar potency to cisplatin but is not cross-resistant and has a much higher activity than 2 or 3. The extent of Ru uptake into A2780 or A2780cis cells does not correlate with potency. Complex I binds to DNA rapidly and quantitatively, preferentially to guanine residues, and causes significant DNA unwinding. Circular and linear dichroism, competitive binding experiments with ethidium bromide, DNA melting, and surface-enhanced Raman spectroscopic data are consistent with combined intercalative and monofunctional (coordination) binding mode of complex 1. This unusual DNA binding mode may therefore make a major contribution to the high potency of complex 1
    corecore