6 research outputs found

    Characterization of the gene encoding human sarcolipin (SLN), a proteolipid associated with SERCA1: Absence of structural mutations in five patients with brody disease

    Get PDF
    Sarcolipin (SLN) is a low-molecular-weight protein that copurifies with the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase (SERCA1). Genomic DNA and cDNA encoding human sarcolipin (SLN) were isolated and characterized and the SLN gene was mapped to chromosome 11q22-q23. Human, rabbit, and mouse cDNAs encode a protein of 31 amino acids. Homology of SLN with phospholamban (PLN) suggests that the first 7 hydrophilic amino acids are cytoplasmic, the next 19 hydrophobic amino acids form a single transmembrane helix, and the last 5 hydrophilic amino acids are lumenal. The cytoplasmic and transmembrane sequences are not well conserved among the three species, but the lumenal sequence is highly conserved. Like SERCA1, SLN is highly expressed in rabbit fast-twitch skeletal muscle, but it is expressed to a lower extent in slow-twitch muscle and to an even lower extent in cardiac muscle, where SERCA2a and PLN are highly expressed. It is expressed in only trace amounts in pancreas and prostate. SLN and PLN genes resemble each other in having two small exons, with their entire coding sequences lying in exon 2 and a large intron separating the two segments. Brody disease is an inherited disorder of skeletal muscle function, characterized by exercise-induced impairment of muscle relaxation. Mutations in the ATP2A1 gene encoding SERCA1 have been associated with the autosomal recessive inheritance of Brody disease in three families, but not with autosomal dominant inheritance of the disease. A search for mutations in the SLN gene in five Brody families, four of which were not linked to ATP2A1, did not reveal any alterations in coding, splice junction or promoter sequences. The homozygous deletion of C438 in the coding sequence of ATP2A1 in Brody disease family 3, leading to a frameshift and truncation following Pro147 in SERCA1, is the fourth ATP2A1 mutation to be associated with autosomal recessive Brody disease

    Diagnostic exome sequencing in 266 Dutch patients with visual impairment

    Get PDF
    Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective

    The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder that frequently results in renal fallure due to progressive cyst development. The major locus, PKD1, maps to 16p13.3. We identified a chromosome translocation associated with ADPKD that disrupts a gene (PBP) encoding a 14 kb transcript in the PKD1 candidate region. Further mutations of the PBP gene were found in PKD1 patients, two deletions (one a de novo event) and a splicing defect, confirming that PBP is the PKD1 gene. This gene is located adjacent to the TSC2 locus in a genomic region that is reiterated more proximally on 16p. The duplicate area encodes three transcripts substantially homologous to the PKD1 transcript. Partial sequence analysis of the PKD1 transcript shows that it encodes a novel protein whose function is at present unknown

    Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors

    No full text
    Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are tricarboxylic acid (TCA) cycle enzymes and tumor suppressors. Loss-of-function mutations give rise to hereditary paragangliomas/pheochromocytomas and hereditary leiomyomatosis and renal cell carcinoma. Inactivation of SDH and FH results in an abnormal accumulation of their substrates succinate and fumarate, leading to inhibition of numerous a-ketoglutarate dependent dioxygenases, including histone demethylases and the ten-eleven-translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. To evaluate the distribution of DNA and histone methylation, we used immunohistochemistry to analyze the expression of 5mC, 5-hydroxymethylcytosine (5hmC), TET1, H3K4me3, H3K9me3, and H3K27me3 on tissue microarrays containing paragangliomas/pheochromocytomas (n = 134) and hereditary and sporadic smooth muscle tumors (n = 56) in comparison to their normal counterparts. Our results demonstrate distinct loss of 5hmC in tumor cells in SDH- and FH-deficient tumors. Loss of 5hmC in SDH-deficient tumors was associated with nuclear exclusion of TET1, a known regulator of 5hmC levels. Moreover, increased methylation of H3K9me3 occurred predominantly in the chief cell component of SDH mutant tumors, while no changes were seen in H3K4me3 and H3K27me3, data supported by in vitro knockdown of SDH genes. We also show for the first time that FH-deficient smooth muscle tumors exhibit increased H3K9me3 methylation compared to wildtype tumors. Our findings reveal broadly similar patterns of epigenetic deregulation in both

    The IGSF1 deficiency syndrome: Characteristics of male and female patients

    No full text
    Context: Ig superfamily member1 (IGSF1) deficiency was recently discovered as a novel X-linked cause of central hypothyroidism (CeH) and macro-orchidism. However, clinical and biochemical data regarding growth, puberty, and metabolic outcome, as well as features of female carriers, are scarce. Objective: Our objective was to investigate clinical and biochemical characteristics associated with IGSF1 deficiency in both sexes.Methods: All patients (n=42, 24 males) from 10 families examined in the university clinics of Leiden, Amsterdam, Cambridge, and Milan were included in this case series. Detailed clinical data were collected with an identical protocol, and biochemical measurements were performed in a central laboratory. Results: Male patients (age 0-87 years, 17 index cases and 7 from family studies) showed CeH (100%), hypoprolactinemia (n = 16, 67%), and transient partial GH deficiency (n = 3, 13%). Pubertal testosterone productionwasdelayed, aswerethe growth spurtandpubic hair development. However, testicular growth started at a normal age and attained macro-orchid size in all evaluable adults. Body mass index, percent fat, and waist circumference tended to be elevated. The metabolic syndrome was present in 4 of 5 patients over 55 years of age. Heterozygous female carriers (age 32-80 years) showed CeH in 6 of 18 cases (33%), hypoprolactinemia in 2 (11%), and GH deficiency in none. As in men, body mass index, percent fat, and waist circumference were relatively high, and the metabolic syndrome was present in 3 cases. Conclusion: In male patients, the X-linked IGSF1 deficiency syndrome is characterized by CeH, hypoprolactinemia, delayed puberty, macro-orchidism, and increased body weight. A subset of female carriers also exhibits CeH
    corecore