1,201 research outputs found
Structural and biophysical analysis of the CLCA1 VWA domain suggests mode of TMEM16A engagement
The secreted protein calcium-activated chloride channel regulator 1 (CLCA1) utilizes a von Willebrand factor type A (VWA) domain to bind to and potentiate the calcium-activated chloride channel TMEM16A. To gain insight into this unique potentiation mechanism, we determined the 2.0-Ã… crystal structure of human CLCA1 VWA bound to C
Early Child Development in Social Context: A Chartbook
Reviews more than 30 key indicators of health and development for children up to age 6, as well as social factors in families and communities that affect these outcomes. Offers practical suggestions for health practitioners and parents
Exploring red cell distribution width as a potential risk factor in emergency bowel surgery – a retrospective cohort study
ncreased preoperative red cell distribution width (RDW) is associated with higher mortality following non-cardiac surgery in patients older than 65 years. Little is known if this association holds for all adult emergency laparotomy patients and whether it affects 30-day or long-term mortality. Thus, we examined the relationship between increased RDW and postoperative mortality. Furthermore, we investigated the prognostic worth of anisocytosis and explored a possible association between increased RDW and frailty in this cohort. We conducted a retrospective, single centre National Emergency Laparotomy Audit (NELA) database study at St Mary’s Hospital Imperial NHS Trust between January 2014 and April 2018. A total of 356 patients were included. Survival models were developed using Cox regression analysis, whereas RDW and frailty were analysed using multivariable logistic regression. Underlying model assumptions were checked, including discrimination and calibration. We internally validated our models using bootstrap resampling. There were 33 (9.3%) deaths within 30-days and 72 (20.2%) overall. Median RDW values for 30-day mortality were 13.8% (IQR 13.1%-15%) in survivors and 14.9% (IQR 13.7%-16.1%) in non-survivors, p=0.007. Similarly, median RDW values were lower in overall survivors (13.7% (IQR42 13%-14.7%) versus 14.9% (IQR 13.9%-15.9%) (p<0.001)). Mortality increased across quartiles of RDW, as did the proportion of frail patients. Anisocytosis was not associated with 30-day mortality but demonstrated a link with overall death rates. Increasing RDW was associated with a higher probability of frailty for 30-day (Odds ratio (OR) 4.3, 95% CI 1.22-14.43, (p=0.01)) and overall mortality (OR 4.9, 95% CI 1.68-14.09, (p=0.001)). We were able to show that preoperative anisocytosis is associated with greater long-term mortality after emergency laparotomy. Increasing RDW demonstrates a relationship with frailty. Given that RDW is readily available at no additional cost, future studies should prospectively validate the role of RDW in the NELA cohort nationally
Novel roles for chloride channels, exchangers, and regulators in chronic inflammatory airway diseases
Chloride transport proteins play critical roles in inflammatory airway diseases, contributing to the detrimental aspects of mucus overproduction, mucus secretion, and airway constriction. However, they also play crucial roles in contributing to the innate immune properties of mucus and mucociliary clearance. In this review, we focus on the emerging novel roles for a chloride channel regulator (CLCA1), a calcium-activated chloride channel (TMEM16A), and two chloride exchangers (SLC26A4/pendrin and SLC26A9) in chronic inflammatory airway diseases
PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing
Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center
Shockwave/Boundary-Layer Interaction Studies Performed in the NASA Langley 20-Inch Mach 6 Air Tunnel
This paper highlights results from a collaborative study performed by The University of Tennessee Space Institute (UTSI) and NASA Langley Research Center on the Shockwave/Boundary-Layer Interaction (SWBLI) generated by a cylindrical protuberance on a flat plate in a Mach 6 flow. The study was performed in the 20-Inch Mach 6 Air Tunnel at NASA Langley Research Center and consisted of two separate entries. In the first entry, simultaneous high-speed schlieren and high-speed pressure-sensitive paint (PSP) imaging which was performed for the first time in the 20-Inch Mach 6 facility at NASA Langley were performed as well as simultaneous high-speed schlieren and oil-flow imaging. In the second entry, the model configuration was modified to increase the size of the interaction region. High-speed schlieren and infrared thermography (IR) surface imaging were performed in this second entry. The goal of these tests was to characterize the SBLI in the presence of a laminar, transitional, and turbulent boundary layer using high-speed optical imaging techniques.
AoA = sting angle-of-attack ()
dcylinder = cylinder diameter (mm)
dtrip = cylindrical tripping element diameter (mm)
shock = shock stand-off distance (mm)
hcylinder = cylinder height (mm)
htrip = cylindrical tripping element height (mm)
HSS = high-speed schlieren
M = freestream Mach number
PSP = pressure-sensitive paint
Re = freestream unit Reynolds number (m-1)
SWBLI = shockwave/boundary-layer interaction
plate = model plate angle () Introduction
his paper highlights two experimental entries performed in the 20-Inch Mach 6 Air Blowdown Tunnel at NASA Langley Research Center in collaboration with The University of Tennessee Space Institute (UTSI). The purpose of these entries was to characterize the dynamic shockwave/boundary-layer interaction (SWBLI) between a vertical cylinder on a flat plate and laminar, transitional (XSWBLI), and turbulent (SWTBLI) boundary layers with a freestream Mach number of 6 using non-intrusive optical diagnostics. Experiments performed by Murphree et al.1,2 were among the first to specifically characterize XSWBLI induced by a vertical cylinder on a flat plate geometry using several optical measurement techniques. Recent optical studies of XSWBLI phenomenon have been performed by UTSI at Mach 2 in their low-enthalpy blow wind tunnel3-8 and by Texas A&M University and UTSI at Mach numbers of 6 and 7 in their Adjustable Contour Expansion wind tunnel.9 The experiments described in this paper were intended to complement previous studies by expanding the freestream unit Reynolds number range, Re, over which the XSWBLI phenomena has been observed. Additionally these experiments, made possible under NASAs new facility funding model under the Aeronautics Evaluation and Test Capabilities (AETC) project, promoted collaboration between university and NASA researchers.
The initial entry in the 20-Inch Mach 6 Air Tunnel at NASA Langley occurred in December of 2016. Originally, testing was to occur in November of 2016 in the 31-Inch Mach 10 Air Tunnel at NASA Langley. This facility was chosen so that the XSWBLI phenomenon could be observed at much higher Mach numbers than had previously been attempted in ground test experiments. The model selected for this experiment, a 10 half-angle wedge with a sharp leading edge (described in detail in section II.B), had previously been used by Danehy et al. [10] for boundary layer transition studies using the nitric oxide planar laser-induced fluorescence (NO PLIF) flow visualization technique. In that work, it was determined that transition could be induced downstream of a single htrip = 1-mm tall, dtrip = 4-mm diameter cylindrical tripping element and that the streamwise location of the transition could be changed for a single Re by changing the model angle-of-attack (AoA) (see Fig. A3 in Ref. [10] for more details). Based on the findings of that work, a decision was made to use the wedge model with the cylindrical tripping element to trip the boundary layer flow ahead of a cylindrical protuberance in order to achieve a XSWBLI.
Unfortunately, the 31-Inch Mach 10 facility had been taken offline for repairs in October of 2016 and a decision was made to move the test to the 20-Inch Mach 6 facility. Since the behavior of the boundary layer with the chosen model configuration had not been studied before in that facility and the available test time was limited, the entry was considered to be exploratory and was used to collect spatially-resolved and time-resolved flow and surface visualization data that would be used to inform a second entry. Test techniques included simultaneous high-speed schlieren (HSS) captured at 160 kHz and high-speed pressure sensitive paint captured at 10 kHz as well as oil flow visualization, captured at 750 Hz.
The second entry in the 20-Inch Mach 6 facility occurred in June and July of 2017. In this follow-on test, modifications to the wind tunnel model were made based on observations made during the first entry and included removing the cylindrical tripping element, increasing the size of the cylinder used to induce the SWBLI to increase the size of the interaction while simultaneously improving spatial resolution, and using a swept ramp array, similar to that described in Ref. [11], to trip the flow to turbulence. Simultaneous HSS (captured at 140 kHz, 100 kHz, and 40 kHz) and conventional IR thermography (captured at 30 Hz) imaging were performed simultaneously in this follow-on entry.
This paper is intended to serve as a summary of the work performed during these two entries, to detail lessons learned from each entry, and to highlight some of the datasets acquired. Details on the experimental setup, model configuration, and techniques used are provided. Papers providing a more rigorous analysis of data acquired during the second entry, including statistical, spectral, and modal decomposition methods, can be found in Refs. [12,13]. An entry examining XSWBLI in the 31-Inch Mach 10 Blowdown Wind Tunnel facility is currently planned for mid-to-late calendar year 2019, pending the success of facility repairs. The work performed and described in this paper and the upcoming entry in the 31-Inch Mach 10 facility at NASA Langley have been made possible by NASAs new facility funding model under the Aeronautics Evaluation and Test Capabilities (AETC) project. Wind Tunnel Facility
All experiments discussed in this paper were performed in the 20-Inch Mach 6 Air Tunnel at NASA Langley Research Center. Specific details pertaining to this facility can be found in Refs. [14,15], with only a brief description of the facility provided here. For both entries, the nominal freestream unit Reynolds number was varied between 1.8106 m-1 (0.5106 ft-1) and 26.3106 m-1 (8106 ft-1). The nominal stagnation pressure was varied between 0.21 MPa and 3.33 MPa and the nominal stagnation temperature was varied between 480 K and 520 K to achieve the desired Re condition. For all runs, the nominal freestream Mach number was 6.
The nearly square test section is 520.7-mm (20.5-inches) wide by 508-mm (20-inches) high. Two 431.8-mm (17-inch) diameter windows made of Corning 7940, Grade 5F schlieren-quality glass serve as the side walls of the tunnel and provide optical access for the high-speed schlieren measurements. A rectangular window made of the same material as the side windows served as the top wall of the test section and provided optical access for the high-speed PSP and oil flow measurements. For the second entry, this top window was replaced with a Zinc Selenide (ZnSe) window with an anti-reflection coating capable of passing IR wavelengths between 8m and 12m with greater than 98% transmittance.
The model was sting supported by a strut attached to a hydraulic system that allows for the model pitch angle to be adjusted between -5 to +55. For the first entry, an initial pitch/pause sweep of the model AoA was performed to observe the resulting SWBLI. Ultimately, however, the sting pitch angle for this entry was fixed at +10.0 so that the angle of the top surface of the wedge relative to the streamwise axis of the tunnel (referred to herein as the plate angle, plate), was plate = 0. For the second entry, plate = 0 and plate = -13.25 were initially tested with the swept ramp array (discussed in the following section) to determine which orientation produced conditions most favorable for XSWBLI to occur based on the heating signatures observed over the top surface of the model in the IR thermography images. Based on these initial tests, plate = -13.25 was set for the remainder of the runs in the second entry.
For both entries, any model changes were performed in a housing located beneath the closed test section. Prior to performing a run of the tunnel, the housing was sealed and the tunnel started. Once the appropriate freestream conditions were achieved, the model was injected into the test section using a hydraulic injection system.
B. Model Geometry
For all runs, a 10 half-angle (20 full-angle) wedge model with a sharp leading edge was used. The model is described in detail in Refs. [10,16]. The top surface of the sharp leading edge of the model extended 47.8 mm from its upstream-most edge to a junction with the upstream edge of a stainless steel top plate that then extended an
(a)
(c)
(b)
Fig. 1 (a) Schematic of top surface of wedge model with gas seeding insert, (b) perspective view of the model in the 20-Inch Mach 6 tunnel with centerline pressure orifices on sharp leading edge, and (c) a perspective view of the model with stainless steel (top) and SLA middle insert (bottom) during the first entry. Flow occurs from left to right
Recommended from our members
Characterization of Cre recombinase models for the study of adipose tissue
The study of adipose tissue in vivo has been significantly advanced through the use of genetic mouse models. While the aP2-CreBI and aP2-CreSalk lines have been widely used to target adipose tissue, the specificity of these lines for adipocytes has recently been questioned. Here we characterize Cre recombinase activity in multiple cell populations of the major adipose tissue depots of these and other Cre lines using the membrane-Tomato/membrane-GFP (mT/mG) dual fluorescent reporter. We find that the aP2-CreBI and aP2-CreSalk lines lack specificity for adipocytes within adipose tissue, and that the aP2-CreBI line does not efficiently target adipocytes in white adipose depots. Alternatively, the Adiponectin-CreERT line shows high efficiency and specificity for adipocytes, while the PdgfRα-CreERUCL and PdgfRα-CreERJHU lines do not efficiently target adipocyte precursor cells in the major adipose depots. Instead, we show that the PdgfRα-Cre line is preferable for studies targeting adipocyte precursor cells in vivo
Polarization resolved angular patterns in nematic liquid crystal cells
We study the angular structure of polarization of light transmitted through a
nematic liquid crystal (NLC) cell by theoretically analyzing the polarization
state as a function of the incidence angles. For a uniformly aligned NLC cell,
the matrix formalism and the orthogonality relations are used to
derive the analytical expressions for the transmission and reflection matrices.
The polarization resolved angular patterns in the two-dimensional projection
plane are characterized in terms of the polarization singularities: C points
(points of circular polarization) and L lines (lines of linear polarization).
In the case of linearly polarized plane waves incident on the homeotropically
aligned cell, we present the results of detailed theoretical analysis
describing the structure of the polarization singularities. We apply the theory
to compute the polarization patterns for various orientational structures in
the NLC cell and discuss the effects induced by the director orientation and
biaxiality.Comment: pdflatex, rextex4, 22 pages, 7 figures (jpeg
- …