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SUMMARY

The secreted protein calcium-activated chloride chan-
nel regulator 1 (CLCA1) utilizes a vonWillebrand factor
type A (VWA) domain to bind to and potentiate the cal-
cium-activated chloride channel TMEM16A. To gain
insight into this unique potentiation mechanism, we
determined the 2.0-Å crystal structure of human
CLCA1 VWA bound to Ca2+. The structure reveals the
metal-ion-dependent adhesion site (MIDAS) in a
high-affinity ‘‘open’’ conformation, engaging in crystal
contacts that likely mimic how CLCA1 engages
TMEM16A. The CLCA1 VWA contains a disulfide
bond between a3 and a4 in close proximity to the
MIDAS that is invariant in the CLCA family and unique
inVWAstructures. Furtherbiophysical studies indicate
that CLCA1 VWA is preferably stabilized by Mg2+ over
Ca2+ and thata6atypically extends from theVWAcore.
Finally, an analysis of TMEM16A structures suggests
residues likely tomediate interactionwithCLCA1VWA.

INTRODUCTION

The calcium-activated chloride channel regulator 1 (CLCA1) is

emerging as an important channel-modifying protein with poorly

definedroles inhealthanddisease (Patel etal., 2009;Sala-Rabanal

et al., 2015a). CLCA1 is a secretedprotein that binds to andpoten-

tiates the calcium-activated chloride channel TMEM16A (Sala-Ra-

banal etal., 2015b). In theairwaysanddigestive tracts, anionchan-

nels play important roles in mediating mucus hydration and pH

balance for protective and digestive purposes. CLCA1 and other

CLCA family members have often been associated with airway

and digestive manifestations. For example, animal models and

clinical studies suggest a compensatory role for CLCAs in the

context of cystic fibrosis (CF). The fatal intestinal disease meco-

nium ileus that arises in cystic fibrosis transmembrane conduc-

tance regulator (CFTR)-deficient mice is corrected by overexpres-

sion of mouse CLCA1 (Young et al., 2007). Correspondingly,

variants of either CLCA1 (van der Doef et al., 2010) or CLCA4

(Kolbe et al., 2013) have been linked to more severe meconium

ileus in humans. In addition, the therapeutic peptide thymosin

alpha 1 (Ta1) has been observed to rectify multiple airway and in-

testinaldefects inamousemodel ofCF,whichmaybepartially due

to increasing CLCA1 expression and, thus, potentiation of

TMEM16A (Romani et al., 2017). By similar arguments, TMEM16A

has emerged as a therapeutic target for CF and other muco-

obstructivediseases (Li etal., 2017;Mall andGalietta, 2015;Sondo

et al., 2014). Inhibiting microRNA (miRNA)-mediated knockdown

of TMEM16A results in increased chloride flux and mucociliary

clearance in CF cell lines, primary CF cells, and mouse models

(Sonneville et al., 2017). Increased TMEM16A activity has also

been linked to other processes that are important to the resolution

of CF airway disease: cell migration and proliferation for wound

healing (Ruffin et al., 2013; Sonneville et al., 2017) and suppression

of inflammatory cytokine production (Veit et al., 2012). Based on

these and other observations, both CLCA1 and TMEM16A have

beensuggestedas targets for stimulation inmuco-obstructivedis-

eases—either to compensate or bypass dysfunctional CFTR inCF

or to stimulate secretion to solubilize obstructivemucus in asthma

and chronic obstructive pulmonary disease (COPD) (Mall et al.,

2018). Such efforts require a detailed molecular level understand-

ing of the mechanism of potentiation.

The ability of CLCA1 to potentiate TMEM16A is regulated by

a matrix-metalloprotease-like (MMP-L) domain found in the N ter-

minus of CLCA1. During secretion, CLCA1 MMP-L cleaves

CLCA1 into two fragments, allowing the N-terminal fragment of

CLCA1 (N-CLCA1) to engage TMEM16A (Yurtsever et al., 2012).

This engagement is mediated between the von Willebrand factor

type A (VWA) domain in CLCA1 and the a9-a10 loop in TMEM16A

and increases the surface expression of TMEM16A, thereby

increasing currents (Sala-Rabanal et al., 2015b, 2017). The

CLCA1 VWA domain (CLCA1 VWA) alone is necessary and suffi-

cient to potentiate TMEM16A (Sala-Rabanal et al., 2017). VWA do-

mainscommonlymediateprotein-protein interactions,withinwhich

the integrin aI subfamily has been the most well-characterized

structurally and biophysically (Luo et al., 2007). Most contain a
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metal-ion-dependent adhesion site (MIDAS) motif to mediate pro-

tein-protein interactions (Springer, 2006; Whittaker and Hynes,

2002). MIDAS motifs consist of a loop containing a DXSXS

sequence, a second loop containing a threonine (T4), and a third

loop containing an aspartate (D5) that acts to chelate and present

adivalent cation (usuallyMg2+) to ligandscontainingacidic residues

(Asp or Glu), which then complete the coordination sphere for the

divalent cation upon binding (Luo et al., 2007). Sequence analysis

indicates that these MIDAS residues are present in CLCA1 VWA

(Whittaker and Hynes, 2002), and we have shown that this motif

and the divalent cation are necessary for CLCA1 potentiation of

TMEM16A (Sala-Rabanal et al., 2017).

VWA domains are found in a functionally diverse range of

proteins, including blood coagulation factors (von Willebrand

factor), complement factors (Springer, 2006), signaling receptors

(a integrins; Shimaoka et al., 2002), toxin receptors (anthrax

toxin receptors; Lacy et al., 2004a, 2004b; Santelli et al., 2004),

extracellular matrix (collagen, Becker et al., 2014; and matrillin,

Paulsson and Wagener, 2018), ion channel regulators or sub-

units (CLCAs, Patel et al., 2009; and Cav1.1 a2d1, Dolphin,

2016), as well as in critical proteins in bacterial pathogens such

as Plasmodium (Song et al., 2012) and Toxoplasma (Song and

Springer, 2014). Structural and biophysical studies have been

carried out for several of these proteins, with those from a integ-

rins, von Willebrand factor, and complement factors being the

best characterized (Springer, 2006). All adopt a Rossman fold

composed of a b sheet surrounded by amphipathic a helices

(Rossmann et al., 1974). However, there are often structural

and functional features that are unique to distinct families of

VWA domains (Becker et al., 2014; Song et al., 2012; Song

and Springer, 2014; Springer, 2006). To date, no high-resolution

structure has been determined for a VWA domain from the

CLCA phylogenetic branch. All CLCA proteins, with the excep-

tion of the CLCA3 pseudogenes (Mundhenk et al., 2018), contain

a central VWA domain (Figure 1). To gain insight into the unique

structural features of CLCA VWA domains, as well as how

CLCA1 VWA might engage TMEM16A, we determined the

high-resolution crystal structure of CLCA1 VWA. The structural

information suggests the mode by which CLCA1 engages

TMEM16A and themost likely sites on TMEM16Awhere engage-

ment occurs.

RESULTS

Crystal Structure of the CLCA1 VWA
Human CLCA1 VWA (Figure 1A) was purified from a mamma-

lian cell expression system and was previously shown to be

functional in potentiating TMEM16A when exogenously applied

Figure 1. Structure of Human CLCA1 VWA Domain

(A) Domain architecture schematic of full-length human CLCA1. Labels denote the following domains: CAT, matrix-metalloprotease-like catalytic domain; Cys,

matrix-metalloprotease-like cysteine-rich region; FnIII, fibronectin type III domain; VWA, von Willebrand factor type A. Numbers above the domains indicate

approximate domain boundaries. Dashed line indicates cleavage site.

(B) Ribbon diagram of the human CLCA1 VWA domain structure obtained by X-ray crystallography. b strands and a and h helices of the VWA domain are labeled

according to the vWFA2 nomenclature (Zhang et al., 2009). A calcium ion (Ca2+) coordinated by the VWA MIDAS motif is shown as a gray sphere. MIDAS motif

residues surrounding the divalent cation are highlighted. The three invariant cysteines and location of the disease-associated variant S357 are also labeled. N, N

terminus; C, C terminus.

(C–F) Human CLCA1 VWA domain is superpositioned to anthrax toxin receptors CMG2 (PDB: 1SHU) (C) and TEM8 (PDB: 3N2N) (D), CD11b aI domain (PDB:

1IDO) (E), and collagen (PDB: 4IGI) (F) VWA domains. MIDASmotifs are indicated for all alignments. The h2 helix of the CLCA1 VWA domain and the a6 helices of

the published VWAdomain structures are labeled in (C)–(E). For all structures, the CLCA1 disulfide is annotated by solid lines. For (A), the natural disulfide in CMG2

is annotated by dashed lines. For (F), the N and C termini are labeled.

See also Figures S1 and S2.
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to HEK293 cells (Sala-Rabanal et al., 2017). The structure was

determined by molecular replacement at a 2.0-Å resolution

(Table 1). There are two molecules in the asymmetric unit

(ASU) that are highly similar (Ca root-mean-square deviation

[RMSD] of 0.3 Å; Figure S1). Therefore, unless otherwise noted,

our analysis of CLCA1 VWA will refer to chain B. The general

structural features are similar to other VWA domain folds: a

core composed of 6 b strands sandwiched between a-helical

bundles (Figure 1B). A DALI structure comparison revealed that

the CLCA1 VWA shares the most three-dimensional similarity

to anthrax toxin receptors CMG2 (Lacy et al., 2004b) and

TEM8 (Fu et al., 2010) and to the voltage-dependent L-type

calcium channel Cav1.1 subunit a2d (Wu et al., 2015, 2016; Fig-

ures 1C–1E) with RMSDs ranging from 1.9–2.3 Å (Holm and

Laakso, 2016). However, there are three notable exceptions in

comparison to these VWA domains from other families. First,

the b sheet core is usually encompassed by 6 a helices. Although

the last a helix, a6 (using the nomenclature of the VWA2 domain;

Zhang et al., 2009), is predicted by secondary structure predic-

tions (JPRED4; Drozdetskiy et al., 2015; see Figure 3A) and is

present in this construct (residues 302–476), we did not observe

defined electron density for it. Also, a slightly longer construct

(residues 302–478) did not yield a map with a6 clearly present

(Figure S2; Table S2). The absence of a6 places the N and C

termini of the CLCA1 VWA on opposite ends, much like the

arrangement reported in the structure of a collagen VI VWA

domain (Figure 1F; Becker et al., 2014). If in solution a6 is not

packed against the domain (see Discussion), this could have im-

plications for how the domains of CLCA1 are oriented relative to

one another or may facilitate cleavage of the N-CLCA1 from C-

CLCA1. Second, there is a disulfide bond in proximity of the

MIDAS residues, linking a3 and h2 of a4 (Figure 1B). The cyste-

ines in this disulfide linkage are unique to the CLCA family of

VWA domains. Most VWA domains do not contain a disulfide

bond, and if one is present, it usually connects the N- and C-ter-

minal boundaries of the domain (Figure 1C). Third, there is a 310
helix (h2) at the N terminus of a4 that ends with one of the disul-

fide-bonded cysteines (Figures 1B–1E). Beyond the secondary

structure, CLCA1 VWA differs most in the loops surrounding

the MIDAS, as would be expected, because these loops usually

dictate ligand-binding specificities of VWA domains (Luo et al.,

2007).

CLCA1 VWA Crystallizes with MIDAS in the Open
Conformation
Most VWA domains mediate protein-protein interactions by a

MIDAS motif, which partially coordinates a divalent cation in a

manner that encourages completion of the coordination sphere

by an acidic residue (Asp or Glu) contributed by the ligand

(McCleverty and Liddington, 2003; Nolte et al., 1999; Shimaoka

et al., 2003; Springer, 2006; Vorup-Jensen et al., 2003). MIDAS

motifs have been observed to exist in two conformations that

correspond to the affinity of the VWA domain for its ligand: an

open, high-affinity configuration and a closed, low-affinity

configuration (Shimaoka et al., 2003). The closed conformation

is defined by MIDAS D5 serving as a direct chelator of the

divalent cation, through which the motif partially satisfies its

electrophilic nature (Figure 2D). In contrast, the open configura-

tion is hallmarked by all the direct MIDAS chelators of the diva-

lent cation being uncharged (threonine, serine, or waters),

creating an electrophilic divalent cation whose coordination is

best satisfied by an acidic residue contributed by the engaging

ligand (Figure 2C). The human CLCA1 VWA contains a perfectly

conserved MIDAS motif (Whittaker and Hynes, 2002): a DXSXS

sequence followed several residues later by a threonine (T383)

and a final aspartate (D412) (Figure 2A). Strong density corre-

sponding to an ion was observed at the center of this site for

both molecules in the ASU (Figure S3). As the CLCA1 VWA

was crystallized in conditions containing high CaCl2 concentra-

tions, we modeled a Ca2+ into the MIDAS site. Very few VWA

domains have been crystallized in the presence of Ca2+ and

instead usually containMg2+ orMn2+ that bind at a higher affinity.

Most VWA MIDAS motifs favor occupancy by Mg2+ rather than

Table 1. Crystallographic Statistics for Human CLCA1 VWA

Parameter Data

Construct 302–476

Data collection statistics

Space group C2

Unit cell

a, b, c (Å) 104.9, 71.8, 74.8

a, b, g (�) 90, 109.8, 90

Source ALS 4.2.2

Wavelength (Å) 1.0000

Resolution (Å) 58.05–2.00 (2.05–2.00)

Rmerge 0.090 (1.814)

CC1/2 0.998 (0.507)

Completeness (%) 98.3 (86.3)

Redundancy 6.4 (4.2)

I/s (I) 10.7(0.6)

Refinement statistics

Rwork (%) 19.87

Rfree (%) 22.51

Amino acid residues (#) 318

Waters (#) 148

RMSD bond length (Å)/angles (�) 0.011/1.181

Wilson B (Å2) 36.7

Average B protein (Å2) 44.57

Average B water (Å2) 47.51

Average B Ca2+ (Å2) 37.50

Ramachandran

% Favored 96.82

% Allowed 3.18

% Outliers 0

Rotamer outliers (%) 3.53

Clashscore 3.41

Molprobity 1.74

Luzzati error 0.284

PDB ID 6PYO

Values shown in parantheses () represent the highest resolution shell. See

also Table S2.
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Ca2+, and Mg2+ coordination usually results in higher-affinity

binding to ligand or greater functional capability (Ajroud et al.,

2004; Baldwin et al., 1998; San Sebastian et al., 2006; Vorup-

Jensen et al., 2007). However, attempts to obtain CLCA1 VWA

crystals in the presence of excess MgCl2 were not successful.

For both molecules in the ASU, the structure reveals the

MIDAS in the open, high-affinity conformation, with S314,

S316, and T383 directly coordinating a calcium ion and D312

and D412 indirectly coordinating through a water molecule (Fig-

ures 2A and 2B). This coordinating geometry is consistent with

our functional studies that showed (1) mutation of MIDAS resi-

dues, particularly T383 and S316, which both directly coordinate

the divalent cation in the open conformation; and (2) chelation of

extracellular Mg2+ by EDTA abrogated CLCA1 VWA-mediated

potentiation of TMEM16A in whole-cell patch clamp experi-

ments (Sala-Rabanal et al., 2017). An acidic residue from an

adjacent molecule in the crystal, either a glutamate from chain

A (E299) or aspartate (D403) from chain B, completes the coor-

dination of the calcium ion. This arrangement is identical to the

open conformation observed for the CD11b aI domain (Fig-

ure 2C) with the exception that, unlike the CD11b structure

reported by Mahalingam et al. (Mahalingam et al., 2011), the

acidic residue appears to mediate a monodentate interaction

with calcium rather than a bidentate interaction. Such crystal

contact ‘‘pseudoligand’’ interactions are commonly observed

in crystal structures of VWA domains that utilize their MIDAS

motif to mediate interactions (Bhattacharya et al., 2004; Lacy

et al., 2004b; Lee et al., 1995; Li et al., 1998). The presence of

Figure 2. CLCA1 VWAMIDASCrystallizes in

an Open Conformation

(A–D) MIDAS regions of human CLCA1 chain B (A,

in green) and chain A (B, in cyan) of the asymmetric

unit and of the open (C) and closed (D) MIDAS

configurations of the CD11b aI domain (PDB: 1IDO

and 1JLM, respectively).

For (A)–(C), the pseudoligand residue is shown in

the color of the appropriate chain. Waters are

depicted as red spheres. Bonds coordinating

divalent cations are shown as blue dashes (for

direct side chain interactions) and yellow dashes

(for indirect or water-mediated interactions).

See also Figure S3.

the open conformation in our structures

implies that the CLCA1 VWA likely adopts

this configuration for a high-affinity inter-

action with TMEM16A and also suggests

that the binding is primarily mediated by a

critical acidic residue within TMEM16A.

An Invariant Disulfide Bond Is
Required for Folding and Secretion
of CLCA1 VWA
Our high-resolution crystal structure of

CLCA1 VWA revealed a disulfide bond be-

tween C386 and C421, connecting a3 and

the h2 segment of a4 (Figure 1B). This di-

sulfide bond is unique in that (1) natural di-

sulfide bonds in VWA domains are not common; and (2) unlike

CMG2 (Lacy et al., 2004b), MIC2 (Song et al., 2012) and TRAP

(Song and Springer, 2014), VWA domains in which a disulfide

bond is found linking the N- and C-termini, the disulfide bridge

in the CLCA1 VWA is found in close proximity to the MIDAS. Inter-

estingly, sequence analysis indicates that CLCA proteins have

three invariant cysteines within the VWA domain (Figure 3A;

Patel et al., 2009). The free cysteine C308 is packed within the

core of CLCA1 VWA (0% sidechain solvent accessibility as calcu-

lated byNACCESS;Hubbard and Thornton, 1993; Figure 1B). This

likely negates the possibility that CLCA1VWAmay covalently bind

to itself or to other proteins, as is the case for someVWAdomains,

such as the Cav-1 and �2 calcium channel a2 subunits, which

remain covalently linked to the d subunit by a disulfide bond (Wu

et al., 2015, 2016) after proteolytic cleavage. To investigate the

structural importance of invariant cysteines in the CLCA1 VWA,

we carried out mutations to serine (C308S, C386S, C421S, and

C386S/C421S) and expressed them in HEK293T cells. Although

all proteins were expressed, only the C308Smutant was secreted

(Figure 3B), indicating that mutants with disrupted disulfide bond

formation were misfolded and retained in the secretory pathway.

Further supporting this observation, for the mutants that were not

secreted, a band at approximately twice the monomer size of

CLCA1 VWA (2 X 20kDa) was observed in cell lysates, suggesting

that aberrant disulfide bonds between molecules may have been

formed during misfolding and not sufficiently reduced in SDS-

PAGE (Figure 3B). To assess the role of this disulfide in CLCA1

VWA stability, we carried out circular dichroism (CD) and

1144 Cell Reports 30, 1141–1151, January 28, 2020



Figure 3. Biophysical Analysis of CLCA Family VWA Domain Invariant Cysteines

(A) Annotated sequence alignment for human, mouse, and pig CLCA VWA domains. Numbering corresponds to the sequence of human CLCA1. Secondary

structure of human CLCA1 is labeled above. A solid line indicates the disulfide bond observed in the crystal structure. Stars next to the sequence indicate that the

VWA domain contains an imperfect MIDAS (Whittaker and Hynes, 2002). Sequences are shown for hCLCA1 (GenBank: NM_001285.3), pCLCA1 (NM_214148.1),

mCLCA1 (NM_017474.2), hCLCA4 (NM_012128.3), pCLCA4a (XM_001926978.5), pCLCA4b (XM_003125934.5), mCLCA4a (NM_207208), mCLCA4b

(NM_001033199), hCLCA2 (NM_006536.6), pCLCA2 (XM_003125930.4), mCLCA2 (NM_178697.5), mCLCA3b (NM_139148), mCLCA3a1 (NM_009899), and

mCLCA3a2 (NM_030601) (where h, human; p, pig; m,mouse). Sequence conservation is color coded as follows: invariant residues (with the exception of cysteine

and invariant MIDAS residues), magenta; invariant cysteines, green; residues with a global similarity score of 0.75 or higher as determined by ESPript 3.0 software

(Robert and Gouet, 2014a), yellow; perfect MIDAS residues, blue; and imperfect MIDAS residues, cyan. Black boxes indicate the most strongly predicted sites of

N-linked glycosylation by NetNGlyc 1.0 software (Blom et al., 2004). The predicted a6 helix (JPRED4; Drozdetskiy et al., 2015) of the CLCA1 VWA domain is

labeled above the alignment in red. MIDAS residues are highlighted in purple. Invariant cysteines are labeled in yellow.

(B) Wild-type (WT) CLCA1 VWA domain and cysteine-to-serine mutants of the invariant disulfides (single mutants C308S, C386S, and C421S, and double mutant

C386S/C421S) were expressed in 293T cells. Supernatants and lysates were analyzed by western blot (anti-6-His). Pos. control, 6-histidine taggedMAM domain

from receptor tyrosine phosphatase m (SDS-PAGE molecular weight [MW] = 30 kDa).

(C) Circular dichroism spectra of the human CLCA1 VWA domain in the presence of EDTA (blue), magnesium (green), and calcium (orange), with (dashed line) or

without (solid line) reducing agent (DTT). Spectra are plotted as mean ellipticity per residue ± SD of triplicate recordings. Representative spectra of three in-

dependent experiments.

(D) Thermal denaturation of human CLCA1 VWA domain by determination of melting temperatures (TM) by monitoring circular dichroism at 222 nm (top panel) or

differential scanning fluorimetry (bottom panel) in the presence of EDTA (blue), magnesium (green), and calcium (orange), with (squares) and without (diamonds)

reducing agent (DTT). Representative TMs of three independent experiments. For circular dichroism, data are represented as the calculated TM and estimated

error from the ProScan software. For differential scanning fluorimetry, data are represented as mean ± SEM of triplicate samples.

Cell Reports 30, 1141–1151, January 28, 2020 1145



differential scanning fluorimetry (DSF) experiments. CD spectra of

CLCA1 VWA in the absence of divalent cations (+EDTA) varied

greatly with the addition of DTT, especially at wavelengths of

<215 nm, indicating partial unfolding upon reduction of the

disulfide bond (Figure 3C). In addition, thermal denaturation

studies by CD and DSF in the presence or absence of DTT

showed that reduction of the disulfidebonddecreased themelting

temperature (TM) by 2.6�C and 6.5�C, respectively (Figure 3D).

Altogether, these results suggest that CLCA family VWA domains

contain an invariant disulfide that is required for folding and stabil-

ity. The role of the invariant free cysteine (C308) is unclear at this

time. However, it should be noted that the sidechain sulfhydryl

does hydrogen bond to the backbone carbonyl of L309, so this

sidechain likely contributes to the stability of the fold.

CLCA1 VWA Is Stabilized by 1 mM Mg2+ but Not Ca2+

Our crystallization studies seemed to indicate that CLCA1 VWA

might not preferentially bind Mg2+, as we were unable to obtain

crystals in the presence of Mg2+. This would be unusual because

VWA domains normally bind Mg2+ with affinities in the low micro-

molar range, with affinities for Ca2+ about 100-fold worse, in the

range of hundreds of micromolar (Ajroud et al., 2004; Baldwin

et al., 1998; San Sebastian et al., 2006; Vorup-Jensen et al.,

2007). To relatively rank the binding affinities of CLCA1 VWA for

the divalent cations,we assessedwhether Ca2+ orMg2+ impacted

thermal stability by usingCDandDSF thermal denaturation exper-

iments. Both analyses were consistent: Mg2+ significantly stabi-

lizes the VWA domain over Ca2+ or cation-free conditions

(+EDTA), increasing the TM of CLCA1 VWA by 1.0�C–1.2�C by

CD and 8.6�C–9.8�C by DSF (Figure 3D). In addition, Mg2+ even

stabilized CLCA1 VWA under reducing conditions (DTM = +2.1�C
or +6.9�C, by CD and DSF, respectively). In contrast, the addition

of 1mMCa2+was unable to shift the TM ofCLCA1VWAcompared

to cation-free conditions. These results are consistent with previ-

ous investigations of VWA domain affinities for divalent cations

(Ajroud et al., 2004; Baldwin et al., 1998; San Sebastian et al.,

2006; Vorup-Jensen et al., 2007) and indicate that CLCA1 VWA

preferentially binds Mg2+ over Ca2+.

Solution Structures of CLCA1 Suggest VWA a6 Extends
from the Core Fold
Because we were unable to observe definitive electron density

for the CLCA1 VWA a6 in our high-resolution crystal structure,

we utilized small-angle X-ray scattering (SAXS) to develop a

low-resolution envelope structure of the VWA domain (Figures

4A–4D) as well as CLCA1 containing the catalytic and VWA

domains with an inactivating mutation in the MMP-L domain

(CAT-CYS-VWA E157Q) (Figures 4E–4H). The CLCA1 VWA

structure was docked into these envelopes using SITUS.

Both envelopes display globular regions consistent with one-

domain (VWA; Figure 4D) or three-domain (CAT-CYS-VWA

E157Q; Figure 4H) proteins. However, both also included a

Figure 4. Solution Structures of CLCA1 VWA and CAT-CYS-VWA Proteins from SAXS Analysis

Solution SAXS for human CLCA1 VWA (302–476) (A–D) and CLCA1 E157Q (22–477) encompassing theMMP-L catalytic domain (CAT), cysteine-rich region (Cys),

and VWA (E–H).

(A and E) Raw SAXS data.

(B and F) Top panel, Guinier regions with SAXS data points (open circles) and fits (solid red line). Radius of gyration (Rg) is labeled above the line of fit. Bottom

panel, residual data points (open circles) of Guinier region with fits (solid red line).

(C and G) Distance distribution functions. Dmax is indicated next to the distribution.

(D and H) Ab initio SAXS envelope models. Models are the average of 10 independent DAMMIN predictions averaged in DAMAVER. CLCA1 VWA domain was

docked into the envelope using SITUS. Domain architecture schematics and cartoons are labeled above the SAXS envelopes. in (D) and (H). N and C termini are

labeled.
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tubular tail extending from the sphere in both envelopes. In light

of the missing a6 helix in our crystal structure, we speculate that

this tail may represent the a6 helix that cannot be resolved in the

crystal structure because it does not pack tightly against the rest

of the domain. Analysis of packing in the CLCA1 VWA crystal

shows that the C terminus for the built structure is located

adjacent to large solvent channels that would allow for multiple

positions for an a6 helix that extends from the core VWA.

Thus, solution structural studies by SAXS suggest that CLCA1

VWA a6 extends from the VWA core fold, in contrast to other

structurally characterized VWA domains.

Structural Insights into the Disease-Associated CLCA1
Variant S357N
In genomic analyses, S357N has been identified as a mutation

modifying the severity of intestinal disease occurring in CF pa-

tients, as it was associated with aggravated meconium ileus

(van der Doef et al., 2010). To gain mechanistic insight into how

this mutation might manifest in disease, we analyzed the struc-

tural environment of S357 in our CLCA1 VWA structure. S357 is

found distal to the MIDAS motif, and the sidechain hydroxyl do-

nates a hydrogen bond to the backbone carbonyl of the adjacent

residue (E358) (Figure 5). This results in the S357 sidechain being

mostly buried (4.8% side chain solvent accessibility by NAC-

CESS). Given the tightly packed environment, it is highly unlikely

that an asparagine at this position would be able to engage in the

same hydrogen bond, which might disrupt folding or folding ki-

netics and could result in reduced expression levels. This would

result in decreased potentiation of calcium-activated chloride

currents, reducing hydration and resulting in thick mucus plug-

ging of the intestine. This would be consistent with our published

functional studies in overexpression systems in which S357N

does not affect the ability of CLCA1 VWA to potentiate chloride

currents by TMEM16A (Sala-Rabanal et al., 2017). This is also

consistent with studies in CFTR knockout mice that show that

mouse CLCA1 expression is decreased in mice with aggravated

meconium ileus, which is rescued by overexpression of mouse

CLCA1 (Young et al., 2007).

Structural Implications for CLCA1 VWA Engagement of
TMEM16A
Our crystal structure of CLCA1 VWA reveals the MIDAS in the

high-affinity open configuration and engaging in pseudoligand

Figure 5. Disease-Associated Residue

S357 Sidechain Engages in an Intramolecu-

lar Hydrogen Bond

The sidechain of S357 and the backbone and

sidechain of E358 are highlighted. The sidechain

hydroxyl of S357 forms a hydrogen bond to the

backbone carbonyl of E358 (indicated by the

dashed yellow line).

interactions with crystal lattice neighbors.

These interactions mimic the mode by

which CLCA1 VWA would engage

TMEM16A. In our previous studies, we

showed that an antibody targeting the

TMEM16A a9-a10 loop could block binding of CLCA1 (Sala-Ra-

banal et al., 2015b). This result, in combination with our current

structural observations, suggests that an acidic residue located

in the TMEM16A a9-a10 loop is primarily responsible for medi-

ating interaction with the CLCA1 VWA MIDAS. To identify the

most likely candidate residues, we analyzed the recently deter-

mined cryoelectron microscopy (cryo-EM) structures of mouse

TMEM16A (Dang et al., 2017; Paulino et al., 2017), making

note of which acidic residues in this loop were most solvent

exposed. This loop contains 9 acidic residues, 5 of which are

highly solvent exposed (>60% sidechain solvent-accessible

surface in NACCESS) (Figure 6). These residues are all

conserved in human TMEM16A (corresponding to D851, D854,

E858, E869, and E874). Thus, one of these five residues is

most likely responsible for mediating the interaction with

CLCA1. Similar modes of engagement have been observed in

the voltage-gated calcium channels system, such as Cav1.1,

where cryo-EM structures reveal an interaction with the a2d

subunit VWA that appear to be primarily mediated by a single

acidic residue in the channel domain (Wu et al., 2015, 2016).

However, it is worth noting that more complex models, such as

three-way modes of engagement, have also been suggested in

this system (Briot et al., 2018). Future mutational, functional,

and structural studies will be required to identify which residues

in TMEM16A are responsible.

DISCUSSION

Here, we present the structural and biophysical analysis of

the CLCA1 VWA, the first structural characterization of a VWA

domain from the CLCA family of channel-modifying proteins.

Our analysis reveals major observations with respect to CLCA

function and a potential role in disease. First, our structure

reveals the MIDAS motif in the high-affinity open conformation,

engaging in pseudoligand contacts thatmimic themode bywhich

it would engage TMEM16A and suggesting that one of five acidic

residues in the a9-a10 loop are primarily responsible for medi-

ating the interaction (Figure 6). However, it should be noted that

the other two extracelluar loops in TMEM16A (a1-a2 loop and

a5-a6 loop) in the cryo-EM structure are in close proximity to

the a9-a10 loop (Paulino et al., 2017), and therefore, antibody

binding to the a9-a10 loop could potentially sterically hinder ac-

cess to these loops as well. So, potential involvement of these
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loops in engagement should not be ruled out. Analysis of

sequence alignments across species indicate that most CLCA4

proteins contain an intact MIDAS motif, whereas most CLCA2

family members do not, missing one or two key residues (Fig-

ure 3A). Because members of the CLCA2 family have been

observed to potentiate calcium-dependent chloride currents

(Gruber et al., 1999), this would indicate that either neighboring

residues compensate to complete a non-standard MIDAS motif

or CLCA2 proteins carry out this function utilizing a different

mode of engagement. Our crystal and solution structures suggest

that a6 of the CLCA1 VWA extends from the core, which may

potentially contribute to theCLCA1VWAMIDAS being accessible

to engage TMEM16A by directing trailing domains further away

from the VWA core structure.

CLCA VWA domains contain three cysteines that are invariant

across species (Figure 3A). Two of them (corresponding to

C386andC421 inCLCA1)engage inadisulfidebond that is unique

compared to other structurally characterized VWA domains. This

linkage appears to be required for folding and stability of the

domain. In addition, this disulfide is in close proximity to key resi-

dues of the MIDAS motif. This disulfide bond appears to bend

the h2 helix toward the MIDAS and possibly constrain both

the a2-a3 and the b4- h2 loops, which contain the conserved

MIDAS threonine (T383) and aspartic acid (D412), respectively,

potentially favoring the open configuration (Figures 2A–2C). It is

interesting to note that in the shift from an open to a closedMIDAS

configuration, it is these two MIDAS residues that alter their

coordination to the divalent cation (i.e., in the open configuration,

threonine directly coordinates the cation and the second aspartic

acid indirectly coordinates through water, but in a closed configu-

ration, threonine indirectly coordinates by water and the second

aspartic acid directly coordinates the cation) (Figures 2C and 2D;

Shimaoka et al., 2003). This disulfide, however, does not appear

Figure 6. Most Probable Sites of CLCA1-

TMEM16A Interaction Suggested by Struc-

tural and Functional Studies

The cryo-EM model of mouse TMEM16A

(mTMEM16A) dimer (PDB: 5OYB; Paulino et al.,

2017) (purple) with the a9-a10 loop (blue) and

labeled acidic residues in this loop shown in either

yellow (<60% solvent-accessible surface for

sidechain) or cyan (>60% solvent-accessible sur-

face for sidechain). CLCA1 VWA (green) is poised

on the extracellular face of mTMEM16A, as our

structural data suggest that interaction with

CLCA1 VWA MIDAS is likely mediated by one of

these residues. Divalent cations (Ca2+) are shown

in gray.

to shift the MIDAS preference for bind-

ing divalent cations. Previous computa-

tional and biophysical studies on aI

domains indicate that Mg2+ is preferred

to Ca2+ by 100- to 1,000-fold affinity

(Ajroud et al., 2004; Baldwin et al., 1998;

San Sebastian et al., 2006; Vorup-Jensen

et al., 2007). Our thermal denaturation

studies suggest similar trends for the

CLCA1 VWA, indicating that at near physiological concentrations

(1 mM), Mg2+ is preferred over Ca2+ and is likely the cation that

mediates the CLCA1-TMEM16A interaction in vivo. The third

invariant cysteine (C308 in CLCA1) is not required for folding or

stability. Interestingly, the Toxoplasma gondiimotility and invasion

protein MIC2 also has a cysteine in this position of b1 that, in

contrast, engages in a disulfide linkage with a4 (C164) in its VWA

domain (Song and Springer, 2014). This is not the case in CLCA

VWAs, as the structurally corresponding position (A392 located

in a3 of CLCA1) is either an alanine or glycine (Figure 3A). It is un-

clear at this time what its functional role is and why it is invariant

at this position.

The S357N variant of CLCA1 has been associated with

increased severity of meconium ileus in CF patients (van der

Doef et al., 2010). This residue is tightly packed and engages

in a stabilizing hydrogen bond with the backbone. It is unlikely

that a mutation to asparagine would be well accommodated

at this position. Thus, this mutation likely impacts the expression

level of CLCA1, thereby decreasing the ability to potentiate

TMEM16A. Clinical and animal model studies further support

the concept that reduced CLCA1 and TMEM16A activity

contributes to pathology in the CF airway and intestinal diseases.

For example, miRNA targeting TMEM16A is overexpressed in

CF airways, and inhibiting this miRNA-mediated knockdown of

TMEM16A results in increased chloride flux and mucociliary

clearance by TMEM16A in CF cell lines, primary CF cells, and

mouse models (Sonneville et al., 2017). In addition, the peptide

drug thymosin alpha 1 (Ta1) has been demonstrated to increase

anion conductance in F508del-CFTR airway cell lines and

mice, and depleting CLCA1 with small interfering RNA (siRNA)

greatly reduces the ion channel activity enhanced by Ta1 (Bene-

detto et al., 2017). Furthermore, CFTR-deficient mice with

increased meconium ileus display lower CLCA1 expression
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that is corrected by the overexpression of CLCA1 (Young et al.,

2007). Altogether, these published observations and our

previous results suggest that CLCA1-mediated enhancement

of TMEM16A activity plays an important role in mucosal

inflammatory diseases and, thereby, represents a viable thera-

peutic target. Our structural results and analysis provide an

important framework for studying the role of CLCA proteins in

health and disease.
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Brett (tbrett@wustl.edu). All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Expi293F cells (RRID: CVCL_D615; sex = female) used for high-level protein expression were cultured at 37�C and 8%CO2 in serum-

free Expi293 Expression Media (ThermoFisher Scientific) supplemented with 0.5% penicillin/streptomycin (Pen/Strep, GIBCO). Hu-

man embryonic kidney 293T cells (ATCC Cat # CRL-3216, RRID: CVCL_0063; sex = female) were cultured at 37�C and 5% CO2 in

Dulbecco’s modified Eagle’s medium (GIBCO) supplemented with 10% Fetal Bovine Serum (FBS), 1% Non-essential Amino Acids

(Corning Inc., Corning, NY), 1% Glutamax (GIBCO) and 1% penicillin/streptomycin (Pen/Strep, GIBCO).

METHOD DETAILS

Expression constructs
Human CLCA1 VWA domain constructs (302-476 and 302-478) and CAT-CYS-VWA (22-477) were cloned into the mammalian cell

expression vector pHLsec, which contains an optimized signal sequence and C-terminal 6-histidine tag for purification (Aricescu

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HRP Conjugated Anti-6-histidine Bethyl Laboratories Cat# A190-114P; RRID: AB_162722

Deposited Data

Raw and Analyzed Data CLCA1 VWA 302-476 This paper PDB: 6PYO

Raw and Analyzed Data CLCA1 VWA 302-478 This paper PDB: 6PYX

CLCA1 VWA 302-476 Coordinates This paper PDB: 6PYO

CLCA1 VWA 302-478 Coordinates This paper PDB: 6PYX

CLCA1 VWA 302-476 SAXS This paper SASBDB: SASDH24

CLCA1 CAT-CYS-VWA 22-477 SAXS This paper SASBDB: SASHD34

Experimental Models: Cell Lines

Expi293F ThermoFisher Cat# A14527; RRID: CVCL_D615

HEK293T ATCC Cat# CRL-3216; RRID: CVCL_0063

Oligonucleotides

Primers for CLCA1 constructs and mutants,

see Table S1

This paper N/A

Recombinant DNA

pHLsec (Aricescu et al., 2006) N/A

pcDNA 3.1 ThermoFisher Cat# V79020

Software and Algorithms

Chirascan Software Applied Photophysics https://www.photophysics.com/systems/

chirascan-systems/chirascan/system-information/

Protein Thermal Shift Software ThermoFisher Cat#4466038

PHENIX (Adams et al., 2010) http://www.phenix-online.org/

COOT (Emsley et al., 2010) https://www2.mrc-lmb.cam.ac.uk/personal/

pemsley/coot/

PyMOL Schrodinger, LLC https://www.schrodinger.com/

XDS (Kabsch, 2010) http://xds.mpimf-heidelberg.mpg.de/

ATSAS (Franke et al., 2017) https://www.embl-hamburg.de/biosaxs/

software.html
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et al., 2006). Mutants (C308S, C386S, C421S and C386S/C421S) were first generated in full-length CLCA1 in the vector pcDNA 3.1

using QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent, Santa Clara, CA) (primer sequences in Table S1) and then

subcloned into pHLsec. All constructs were verified by sequencing.

Protein expression and purification
WT human CLCA1 VWA domains (302-476 and 302-478) and CAT-CYS-VWA (22-477) were expressed in Expi293 cells via transient

transfection with either Hype-5 or Hype-293 (OZ Biosciences, San Diego, CA) at a 1:1.5 ratio (mg of DNA: mL of transfection reagent)

using 1 mg of plasmid per 1 million cells, similar to our previous reports (Kober et al., 2015). Media from supernatants were harvested

after 72-96 hours by centrifugation, concentrated to 1/10 of the original volume using a 10 kDa cutoff membrane (Ultracel Ultrafiltra-

tion Discs, EMD Millipore) and adjusted to pH 8.5 and 5 mM imidazole. The concentrated protein was purified using Ni-NTA

Superflow resin (QIAGEN, Hilden, Germany) and eluted in 5 mL of buffer containing 50 mM K2HPO4 (pH 8), 300 mM NaCl, and

250 mM imidazole. The eluted protein was concentrated and purified by size exclusion chromatography (Superdex75 Increase

10/300 GL for VWA in 20 mM Tris (pH 8) and 150 mM NaCl and Superdex 200 Increase 10/300 GL for CAT-CYS-VWA in 20 mM

HEPES and 150 mM NaCl (pH 7.4), GE Healthcare). Purified CLCA1 VWA was dialyzed into buffer containing 20 mM HEPES (pH

7.4) and 150 mM NaCl and concentrated in a 10,000 kDA cutoff centrifuge concentrator (Vivaspin 500, Sartorius) to 12 mg ml-1,

as calculated from absorbance at 280 nm, for crystallization. Protein purity was assessed by Coomassie staining of SDS-PAGE.

Crystallization, structure determination, and analysis
Crystals of CLCA1 VWA (302-476) were grown at 17�C by hanging drop vapor diffusion by mixing 1:1 with well solution containing

0.2 M HEPES pH 7.5, 0.1 M CaCl2, 28% PEG 400 or by streak seeding into the same conditions containing 5% glycerol. Crystals

formed within 6 days. Crystals were flash frozen under a nitrogen stream at �160�C. Data were collected at the Advanced Light

Source, beamline 4.2.2 (Berkeley, CA) and scaled and processed to 2.0 Å using XDS (Kabsch, 2010). A molecular replacement so-

lution was found with PHASER (TFZ = 10.2) using uncharacterized membrane spanning protein from Vibrio fischeri (4RCK) (poly-Ala

model) as the probe, locating twomolecules in the asymmetric unit (ASU) for a solvent content of 61%. The initial solution was refined

by rigid body refinement in PHENIX (Adams et al., 2010) and initially built using AUTOBUILD in PHENIX. The model was improved

by iterative rounds of manual rebuilding in COOT (Emsley et al., 2010) and refinement using PHENIX. Secondary structure restraints

were used during refinement and hydrogens were added as a riding model in the final rounds. Simulated annealing was used early

in refinement, and optimization of X-ray and ADP or stereochemistry weight was applied in later rounds. The final model is 94%

complete with 17 C-terminal residues (460-476) in both chains and the first N- terminal residue (302) in chain B not visible in the elec-

tron density. Chain A contained three N-terminal residues (ETG 299-301) that are a remnant of the vector-encoded signal sequence

(Aricescu et al., 2006). LigPlot+ (Laskowski and Swindells, 2011) was used to analyze cation contacts. Solvent accessibility calcu-

lations were carried out using NACCESS (Hubbard and Thornton, 1993). For structure-based alignment, amino acid sequences were

aligned using Clustal Omega (Sievers et al., 2011) and residue conservation scored by ESPript (Robert andGouet, 2014a). Secondary

structure predictions were generated in JPRED4 (Drozdetskiy et al., 2015). All crystallographic and analysis software used were

compiled and distributed by the SBGrid resource (Morin et al., 2013) and diffraction images were archived with the SB Data Grid

(Meyer et al., 2016). Crystals of CLCA1 VWA (302-478) were grown under similar conditions and diffracted to 2.6 Å. The structure

was solved by isostructural replacement of CLCA1 VWA (302-476), and iteratively refined and rebuilt as above. The final model con-

sisted of residues 302-461 (chain A) and 303-459 (chain B).

Small angle X-ray scattering
SAXS data was obtained at the Advanced Light Source on the SIBYLS beamline 12.3.1 (Dyer et al., 2014). Thirty-three exposures of

0.3 s were obtained for each protein at 1-10 mg/mL and scattering from the dialysis buffer (20 mMHEPES pH 7.4, 150 mMNaCl, and

2% glycerol) was subtracted. Data were inspected for quality and scale-merged in scÅtter 3.0g (Rambo, 2015). Data was subse-

quently analyzed in the ATSAS 2.8.4 suite (Franke et al., 2017) using PRIMUS (Konarev et al., 2003). Guinier analysis showed no ra-

diation damage, aggregation or concentration effects. I(0) and the pair distance distribution function P(r) were calculated in GNOM

(Svergun, 1992) within PRIMUS. Ten low-resolution ab initio models from DAMMIN (Franke and Svergun, 2009) were automatically

averaged using DAMAVER (Volkov and Svergun, 2003) and converted to a surface map using SITUS (Wriggers and Chacon, 2001).

Graphical Representation of Structures

All molecular graphics images were produced using PyMOL.

Heterologous expression of CLCA1 and Western Blotting
HEK293T cells were grown to 70%–90% confluency and transfected with CLCA1 VWA domain constructs and 293Fectin at a 1:2

ratio (mg of DNA: mL of transfection reagent) using 1 mg of plasmid DNA per 1 million cells. After 24 hours, supernatants were mixed

with 2x SDS containing 2-mercaptoethanol sample buffer. Cells were pelleted and lysed in PBS-1% Triton X-100, then diluted in

2x SDS containing 2-mercaptoethanol sample buffer and sonicated. Samples were boiled for 5 minutes, then loaded on a

4%–12% Bis-Tris NuPage gel (Life Technologies). Proteins were transferred to nitrocellulose membranes using an iBlot Gel transfer

device (Life Technologies). Membranes were blocked with 0.5% blotting-grade blocker nonfat milk (Bio-Rad) in PBS with 0.1%

Tween-20. HRP-conjugated anti-6-histidine antibody (Bethyl Laboratories) diluted 1:5000 in blocking buffer was incubated on the
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membrane for 10 minutes at room temperature. Following three washes with PBS-Tween-20, signal was detected using Pierce ECL

Western Blotting Substrate (Thermo Fisher Scientific, Rockford, IL). Developed films were scanned.

Circular Dichroism
CD spectroscopy measurements were performed using an Chirascan spectropolarimeter equipped with a Peltier temperature

controller (Applied Photophysics). A 1 cm path length cuvette was used and the protein concentration was 50 mg/mL. Thermal dena-

turation experiments were carried out in 20 mM Tris pH 8.0, 100 mM NaCl and 1 mM of either EDTA, MgCl2, or CaCl2. For reducing

conditions, the buffer contained 1mMDTT. Ellipticity wasmeasured at 222 nm in 1�C steps from 20 to 90�C at a rate of 1�C/min. Data

was analyzed using ProScan software (Applied Photophysics).

Differential Scanning Fluorimetry
Thermal stability was assessed by differential scanning fluorimetry (DSF) on protein purified by size exclusion chromatography. The

Protein Thermal Shift kit (Applied Biosystems) was used according to manufacturer’s instructions. Briefly, protein was concentrated

to 0.5 mg/mL after buffer exchange into 20 mMHEPES pH 7.5, 150 mMNaCl and 1mM of either EDTA, MgCl2, CaCl2 or DTT. 5 mL of

reaction buffer and 2.5 mL 8x fluorescent dye were added to 12.5 mL protein on ice. Melt-curve experiments were performed using

Fast7500 qPCRmachine (Applied Biosystems) starting at 25�C and with continuous 1% ramp to 95�C (roughly at 1�C/min). The data

were analyzed using Protein Thermal Shift software (Applied Biosystems).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses for differential scanning fluorimetry (DSF) experiments, specifically for melting temperature (TM) determination,

were performed using Protein Thermal Shift software (Applied Biosystems). Representative derivative-curve melting temperatures

from three (n = 3) independent experiments are shown. Melting temperature data are represented as mean ± SEM of triplicate

(n = 3) samples. For circular dichroism (CD) experiments, statistical analyses, specifically for TM determination, were performed using

the ProScan software (Applied Photophysics). Representative spectra of three (n = 3) independent experiments is shown. CD spectra

are plotted asmean ellipticity per residue ± SD of triplicate (n = 3) recordings. Melting temperature data are represented as the calcu-

lated melting temperature using a sigmoid curve fit and estimated error reported from the ProScan software. Statistical details are

also included in Figure 3 legends.

DATA AND CODE AVAILABILITY

Coordinates and structure factors for CLCA1 VWA (302-476) and CLCA1 VWA (302-478) have been deposited in the RCSB Protein

Data Bankwith accession numbers PBD: 6PYOand 6PYX, respectively. SAXS data for CLCA1 VWA (302-476) andCLCA1CAT-CYS-

VWA (22-477) have been deposited in the SASBDB with accession numbers SASBDB: SASDH24 and SASDH34, respectively.
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Related to Methods 

Table S1. Primer sequences used in study 
Primer 5’ – 3’ sequence 
hCLCA1 VWA (302-476) 
forward 

GAAACCGGTATTGGACAAAGAATTGTGTGT 

hCLCA1 VWA (302-476) reverse CGGGGTACCTGAAAGGGCCCCAAAAGCATC 
hCLCA1 VWA (302-478) 
forward 

GAAACCGGTATTGGACAAAGAATTGTGTGT 

hCLCA1 VWA (302-478) reverse CGGGGTACCTCCTGATGAAAGGGCCCCAAAAGC 
hCLCA1 CAT-CYS-VWA (22-
477) forward 

GAAACCGGTAATTCACTCATTCAGCTGAAC 

hCLCA1 CAT-CYS-VWA (22-
477) reverse 

CGGGGTACCTGAAAGGGCCCCAAAAGCATC 

hCLCA1 C308S forward GGTATTGGACAAAGAATTGTGAGTTTAGTCCTTGACAAATCTG 

hCLCA1 C308S reverse CAGATTTGTCAAGGACTAAACTCACAATTCTTTGTCCAATACC 

hCLCA1 C386S forward GGGACGTCCATCAGCAGCGGGCTTC 

hCLCA1 C386S reverse GAAGCCCGCTGCTGATGGACGTCCC 

hCLCA1 C421S forward GACAACACTATAAGTGGGAGCTTTAACGAGGTCAAAC 

hCLCA1 C421S reverse GTTTGACCTCGTTAAAGCTCCCACTTATAGTGTTGTC 

hCLCA1 E157Q forward AGGGCATTTGTCCATCAGTGGGCTCATCTA 

hCLCA1 E157Q reverse ACCTTGTGGTCCATATTCAGCTAACTTTTT 
 

 

 

  



 

 

Figure S1 (Related to Figure 1). Superposition of hCLCA1 VWA Domain Chains A and B 

within the Asymmetric Unit 

A) Alignment of hCLCA1 VWA domain chains A (cyan) and B (green) within the asymmetric 

unit, with a Cα RMSD of 0.3 Å. MIDAS residues, invariant disulfides and S357 are highlighted. 

Pseudoligand residue from chain A (E299) and chain B (D403) are also shown. The N-termini 

(N) and C-termini (C) of each chain are labeled. 

 

 

 

 

 

 

 

 

 



 

Related to Table 1 

Table S2. Crystallographic statistics for human CLCA1 VWA 302-478 
Data collection statistics 
Space Group C2 
Unit Cell 
	  	  	  	  	  a,	  b,	  c	  (Å)	   103.4,	  74.5,	  75.4	  
	  	  	  	  	  α,	  β,	  γ	  (º)	   90,	  109.4,	  90	  
Source ALS 4.2.2 
Wavelength(Å) 1.0000 
Resolution(Å) 59.79 – 2.60 (2.72-2.60) 
Rmerge  0.266 (1.734) 
CC1/2 0.977 (0.328) 
Completeness(%) 99.6 (98.1) 
Redundancy 3.6 (3.3) 
I/σ(I) 4.6 (0.6) 
Refinement statistics 
Rwork (%) 21.82 
Rfree (%) 27.87 
Amino Acid Residues(#) 320 
Waters (#) 82 
RMSD bond length (Å)/angles(°) 0.008/0.906 
Wilson B (Å2) 

40.5 
Average B protein (Å2) 42.32 
Average B water (Å2) 40.62 
Average B Ca2+ (Å2) 40.12 
Ramachandran  
     %Favored 94.3 
     %Allowed 5.7 
     %Outliers 0 
Rotamer outliers (%) 0 
Clashscore  8.91 
Molprobity  1.86 
Luzzati Error 0.393 
PDB ID 6PYX 

 

 

 



 

 

Figure S2 (Related to Figure 1).  Superposition of crystal structures of CLCA1 VWA Domain 

302-476 and 302-478. The structures are extremely similar (Cα RMSD of 0.33 Å). A) Alignment 

of chain B from CLCA1 VWA domain constructs containing residues 302-476 (green) and 

residues 302-478 (orange). B) Alignment of chain A from hCLCA1 VWA domain constructs 

containing residues 302-476 (cyan) and residues 302-478 (yellow). MIDAS residues, invariant 

disulfides and S357 are highlighted. Pseudo-ligand residue from chain A (E299) and chain B 

(D403) are also shown. The N-termini (N) and C-termini (C) of each chain are labeled. 

 

 

 

 

 

 



 

 

Figure S3 (Related to Figure 2). Difference Electron Density for the MIDAS and Ca2+ Ion 

Difference electron density (2mFo-DFc contoured at 2σ) for the CLCA1 VWA MIDAS residues 

of chain B (green), including E299 from chain A (cyan) and calcium ion (grey).  
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