8,321 research outputs found

    Exploring the Cost Effectiveness of Land Conservation Auctions and Payment Policies

    Get PDF
    Until recently public efforts to encourage conservation on private land in many countries has primarily been through uniform payment policies. Auctions are increasingly used as a payment mechanism to acquire public benefits such as conservation actions that provide environmental improvements on private land (e.g. the US Conservation Reserve Program (CRP). The economic rationale for use of auctions is that they create decentralised incentives to offer bids at close to the true landholder opportunity costs, even when the implementing agency holds little information about these opportunity costs. This paper assesses the cost of a case study auction relative to four payment policies that use varying levels of information strategically to reduce rent payment and to prioritise funding based on environmental value. The results suggest that the estimated cost savings achievable with the discriminant price auction for conservation contracts depends on the policy to which the auction outcomes are compared. Auction cost savings are likely to be greatest when compared to policy alternatives involving little effort to discriminate amongst offers based on differences in landholder opportunity costs. A further key finding is that, for this case study, most of the savings resulting from the discriminant price auction could be attributed to the use of the environmental benefits index in project ranking and selection.Land Economics/Use,

    A sensory-guided surgical micro-drill

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 The Authors.This article describes a surgical robotic device that is able to discriminate tissue interfaces and other controlling parameters ahead of the drill tip. The advantage in such a surgery is that the tissues at the interfaces can be preserved. A smart tool detects ahead of the tool point and is able to control the interaction with respect to the flexing tissue, to avoid penetration or to control the extent of protrusion with respect to the position of the tissue. For surgical procedures, where precision is required, the tool offers significant benefit. To interpret the drilling conditions and the conditions leading up to breakthrough at a tissue interface, a sensing scheme is used that discriminates between the variety of conditions posed in the drilling environment. The result is a fully autonomous system, which is able to respond to the tissue type, behaviour, and deflection in real-time. The system is also robust in terms of disturbances encountered in the operating theatre. The device is pragmatic. It is intuitive to use, efficient to set up, and uses standard drill bits. The micro-drill, which has been used to prepare cochleostomies in the theatre, was used to remove the bone tissue leaving the endosteal membrane intact. This has enabled the preservation of sterility and the drilling debris to be removed prior to the insertion of the electrode. It is expected that this technique will promote the preservation of hearing and reduce the possibility of complications. The article describes the device (including simulated drill progress and hardware set-up) and the stages leading up to its use in the theatre.Queen Elizabeth Hospital, Birmingham, U

    Theoretical infra-red, Raman, and Optical spectra of the B36N36 cage

    Full text link
    The B36N36 fullerene-like cage structure was proposed as candidate structure for the single-shell boron-nitride cages observed in electron-beam irradiation experiment. We have performed all electron density functional calculations, with large polarized Gaussian basis sets, on the B36N36 cage. We show that the cage is energetically and vibrationally stable. The infra-red, Raman and optical spectra are calculated. The predicted spectra, in combination with experimentally measured spectra, will be useful in conclusive assignment of the proposed B36N36 cage. The vertical and adiabatic ionization potentials as well as static dipole polarizability are also reported.Comment: RevTex, 4 pages, 4 figures (TO appear in Physical Review A (Breif Report)

    Cholinergic and Non-Cholinergic Projections from the Pedunculopontine and Laterodorsal Tegmental Nuclei to the Medial Geniculate Body in Guinea Pigs

    Get PDF
    The midbrain tegmentum is the source of cholinergic innervation of the thalamus and has been associated with arousal and control of the sleep/wake cycle. In general, the innervation arises bilaterally from the pedunculopontine tegmental nucleus (PPT) and the laterodorsal tegmental nucleus (LDT). While this pattern has been observed for many thalamic nuclei, a projection from the LDT to the medial geniculate body (MG) has been questioned in some species. We combined retrograde tracing with immunohistochemistry for choline acetyltransferase (ChAT) to identify cholinergic projections from the brainstem to the MG in guinea pigs. Double-labeled cells (retrograde and immunoreactive for ChAT) were found in both the PPT (74%) and the LDT (26%). In both nuclei, double-labeled cells were more numerous on the ipsilateral side. About half of the retrogradely labeled cells were immunonegative, suggesting they are non-cholinergic. The distribution of these immunonegative cells was similar to that of the immunopositive ones: more were in the PPT than the LDT and more were on the ipsilateral than the contralateral side. The results indicate that both the PPT and the LDT project to the MG, and suggest that both cholinergic and non-cholinergic cells contribute substantially to these projections

    The limitations of Slater's element-dependent exchange functional from analytic density functional theory

    Full text link
    Our recent formulation of the analytic and variational Slater-Roothaan (SR) method, which uses Gaussian basis sets to variationally express the molecular orbitals, electron density and the one body effective potential of density functional theory, is reviewed. Variational fitting can be extended to the resolution of identity method,where variationality then refers to the error in each two electron integral and not to the total energy. It is proposed that the appropriate fitting functions be charge neutral and that all ab initio energies be evaluated using two-center fits of the two-electron integrals. The SR method has its root in the Slater's Xalpha method and permits an arbitrary scaling of the Slater-Gaspar-Kohn-Sham exchange-correlation potential around each atom in the system. Of several ways of choosing the scaling factors (Slater's exchange parameters), two most obvious are the Hartree-Fock (HF), alpha_HF, values and the exact atomic, alpha_EA, values. The performance of this simple analytic model with both sets for atomization energies of G2 set of 148 molecules is better than the local density approximation or the HF theory, although the errors in atomization energy are larger than the target chemical accuracy. To improve peformance for atomization energies, the SR method is reparametrized to give atomization energies of 148 molecules to be comparbale to those obtained by one of the most widely used generalized gradient approximations. The mean absolute error in ionization potentials of 49 atoms and molecules is about 0.5 eV and that in bond distances of 27 molecules is about 0.02 Angstrom. The overall good performance of the computationally efficient SR method using any reasonable set of alpha values makes it a promising method for study of large systems.Comment: 33 pages, Uses RevTex, to appear in The Journal of Chemical Physic

    Use of Flexible Body Coupled Loads in Assessment of Day of Launch Flight Loads

    Get PDF
    A Day of Launch flight loads assessment technique that determines running loads calculated from flexible body coupled loads was developed for the Ares I-X Flight Test Vehicle. The technique was developed to quantify DOL flight loads in terms of structural load components rather than the typically used q-alpha metric to provide more insight into the DOL loads. In this technique, running loads in the primary structure are determined from the combination of quasi-static aerodynamic loads and dynamic loads. The aerodynamic loads are calculated as a function of time using trajectory parameters passed from the DOL trajectory simulation and are combined with precalculated dynamic loads using a load combination equation. The potential change in aerodynamic load due to wind variability during the countdown is included in the load combination. In the event of a load limit exceedance, the technique allows the identification of what load component is exceeded, a quantification of how much the load limit is exceeded, and where on the vehicle the exceedance occurs. This technique was used to clear the Ares I-X FTV for launch on October 28, 2009. This paper describes the use of coupled loads in the Ares I-X flight loads assessment and summarizes the Ares I-X load assessment results

    Accurate molecular energies by extrapolation of atomic energies using an analytic quantum mechanical model

    Full text link
    Using a new analytic quantum mechanical method based on Slater's Xalpha method, we show that a fairly accurate estimate of the total energy of a molecule can be obtained from the exact energies of its constituent atoms. The mean absolute error in the total energies thus determined for the G2 set of 56 molecules is about 16 kcal/mol, comparable to or better than some popular pure and hybrid density functional models.Comment: 5 pages, REVTE

    Effect of soil P supply on the early growth and nodulation of lupins.

    Get PDF
    Trial 89GL33 Location: Glasshouse University of Western Australia. Four seeds were sown at 2.5 cm depth in pots containing 4.5 kg of steam sterilized soil treated with the following basal nutrients (mg/kg soil) : K2SO4, 121.7; MgSO4.7H20, 17.5: CaCl2, 21; FE sequestraene, 7.2; H3BO3, 0.5; MnSO4, 10.8; ZnSO4, 7H20, 7.5; CuSO4, 5H20, 5.3; Na2Mo04.2H20, 0.27; CoSO4.7H2O, 0.07

    Stability of Filters for the Navier-Stokes Equation

    Get PDF
    Data assimilation methodologies are designed to incorporate noisy observations of a physical system into an underlying model in order to infer the properties of the state of the system. Filters refer to a class of data assimilation algorithms designed to update the estimation of the state in a on-line fashion, as data is acquired sequentially. For linear problems subject to Gaussian noise filtering can be performed exactly using the Kalman filter. For nonlinear systems it can be approximated in a systematic way by particle filters. However in high dimensions these particle filtering methods can break down. Hence, for the large nonlinear systems arising in applications such as weather forecasting, various ad hoc filters are used, mostly based on making Gaussian approximations. The purpose of this work is to study the properties of these ad hoc filters, working in the context of the 2D incompressible Navier-Stokes equation. By working in this infinite dimensional setting we provide an analysis which is useful for understanding high dimensional filtering, and is robust to mesh-refinement. We describe theoretical results showing that, in the small observational noise limit, the filters can be tuned to accurately track the signal itself (filter stability), provided the system is observed in a sufficiently large low dimensional space; roughly speaking this space should be large enough to contain the unstable modes of the linearized dynamics. Numerical results are given which illustrate the theory. In a simplified scenario we also derive, and study numerically, a stochastic PDE which determines filter stability in the limit of frequent observations, subject to large observational noise. The positive results herein concerning filter stability complement recent numerical studies which demonstrate that the ad hoc filters perform poorly in reproducing statistical variation about the true signal
    • …
    corecore