6,750 research outputs found

    Towards a quantum approach to cell membrane electrodynamics

    Get PDF
    The ultimate active constituents of the living medium, membranes, ions and molecules, are at the level of the nanometer. Their interactions thus require a quantum processing. The characteristic Action A, linked to the "quantum objects" : ions, radicals, water molecule... of the living medium, has an average value of A ~= 14.10-34 J.s or A ~= 2 h . It is thus strictly impossible to formulate a realistic "classical " theory of membrane electrodynamics. The transfer of the sodium ion - among others - could be then ensured under the action of a Tunnel effect, (with Hartman?s mechanism) specific to the channel and the ion transferred.Comment: 7 page

    Bacterial reaction centers with plant type pheophytins

    Get PDF

    Alien Registration- Breton, Francois J. (Fairfield, Somerset County)

    Get PDF
    https://digitalmaine.com/alien_docs/8603/thumbnail.jp

    Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface

    Get PDF
    Although the creation of spin polarization in various non-magnetic media via electrical spin injection from a ferromagnetic tunnel contact has been demonstrated, much of the basic behavior is heavily debated. It is reported here for semiconductor/Al2O3/ferromagnet tunnel structures based on Si or GaAs that local magnetostatic fields arising from interface roughness dramatically alter and even dominate the accumulation and dynamics of spins in the semiconductor. Spin precession in the inhomogeneous magnetic fields is shown to reduce the spin accumulation up to tenfold, and causes it to be inhomogeneous and non-collinear with the injector magnetization. The inverted Hanle effect serves as experimental signature. This interaction needs to be taken into account in the analysis of experimental data, particularly in extracting the spin lifetime and its variation with different parameters (temperature, doping concentration). It produces a broadening of the standard Hanle curve and thereby an apparent reduction of the spin lifetime. For heavily doped n-type Si at room temperature it is shown that the spin lifetime is larger than previously determined, and a new lower bound of 0.29 ns is obtained. The results are expected to be general and occur for spins near a magnetic interface not only in semiconductors but also in metals, organic and carbon-based materials including graphene, and in various spintronic device structures.Comment: Final version, with text restructured and appendices added (25 pages, 9 figures). To appear in Phys. Rev.

    Stress response function of a two-dimensional ordered packing of frictional beads

    Full text link
    We study the stress profile of an ordered two-dimensional packing of beads in response to the application of a vertical overload localized at its top surface. Disorder is introduced through the Coulombic friction between the grains which gives some indeterminacy and allows the choice of one constrained random number per grain in the calculation of the contact forces. The so-called `multi-agent' technique we use, lets us deal with systems as large as 1000×10001000\times1000 grains. We show that the average response profile has a double peaked structure. At large depth zz, the position of these peaks grows with czcz, while their widths scales like Dz\sqrt{Dz}. cc and DD are analogous to `propagation' and `diffusion' coefficients. Their values depend on that of the friction coefficient μ\mu. At small μ\mu, we get c0cμc_0-c \propto \mu and DμβD \propto \mu^\beta, with β2.5\beta \sim 2.5, which means that the peaks get closer and wider as the disorder gets larger. This behavior is qualitatively what was predicted in a model where a stochastic relation between the stress components is assumed.Comment: 7 pages, 7 figures, accepted version to Europhys. Let

    Tribune libre

    Get PDF

    The Fetal Allograft Revisited: Does the Study of an Ancient Invertebrate Species Shed Light on the Role of Natural Killer Cells at the Maternal-Fetal Interface?

    Get PDF
    Human pregnancy poses a fundamental immunological problem because the placenta and fetus are genetically different from the host mother. Classical transplantation theory has not provided a plausible solution to this problem. Study of naturally occurring allogeneic chimeras in the colonial marine invertebrate, Botryllus schlosseri, has yielded fresh insight into the primitive development of allorecognition, especially regarding the role of natural killer (NK) cells. Uterine NK cells have a unique phenotype that appears to parallel aspects of the NK-like cells in the allorecognition system of B. schlosseri. Most notably, both cell types recognize and reject "missing self" and both are involved in the generation of a common vascular system between two individuals. Chimeric combination in B. schlosseri results in vascular fusion between two individual colonies; uterine NK cells appear essential to the establishment of adequate maternal-fetal circulation. Since human uterine NK cells appear to de-emphasize primary immunological function, it is proposed that they may share the same evolutionary roots as the B. schlosseri allorecognition system rather than a primary origin in immunity
    corecore