53 research outputs found
Shape oscillation of a rotating Bose-Einstein condensate
We present a theoretical and experimental analysis of the transverse monopole
mode of a fast rotating Bose-Einstein condensate. The condensate's rotation
frequency is similar to the trapping frequency and the effective confinement is
only ensured by a weak quartic potential. We show that the non-harmonic
character of the potential has a clear influence on the mode frequency, thus
making the monopole mode a precise tool for the investigation of the fast
rotation regime
Effect of Quadratic Zeeman Energy on the Vortex of Spinor Bose-Einstein Condensates
The spinor Bose-Einstein condensate of atomic gases has been experimentally
realized by a number of groups. Further, theoretical proposals of the possible
vortex states have been sugessted. This paper studies the effects of the
quadratic Zeeman energy on the vortex states. This energy was ignored in
previous theoretical studies, although it exists in experimental systems. We
present phase diagrams of various vortex states taking into account the
quadratic Zeeman energy. The vortex states are calculated by the
Gross-Pitaevskii equations. Several new kinds of vortex states are found. It is
also found that the quadratic Zeeman energy affects the direction of total
magnetization and causes a significant change in the phase diagrams.Comment: 6 pages, 5 figures. Published in J. Phys. Soc. Jp
Critical rotation of a harmonically trapped Bose gas
We study experimentally and theoretically a cold trapped Bose gas under
critical rotation, i.e. with a rotation frequency close to the frequency of the
radial confinement. We identify two regimes: the regime of explosion where the
cloud expands to infinity in one direction, and the regime where the condensate
spirals out of the trap as a rigid body. The former is realized for a dilute
cloud, and the latter for a Bose-Einstein condensate with the interparticle
interaction exceeding a critical value. This constitutes a novel system in
which repulsive interactions help in maintaining particles together.Comment: 4 pages, 4 figures, submitted to PR
From Rotating Atomic Rings to Quantum Hall States
Considerable efforts are currently devoted to the preparation of ultracold
neutral atoms in the emblematic strongly correlated quantum Hall regime. The
routes followed so far essentially rely on thermodynamics, i.e. imposing the
proper Hamiltonian and cooling the system towards its ground state. In rapidly
rotating 2D harmonic traps the role of the transverse magnetic field is played
by the angular velocity. For particle numbers significantly larger than unity,
the required angular momentum is very large and it can be obtained only for
spinning frequencies extremely near to the deconfinement limit; consequently,
the required control on experimental parameters turns out to be far too
stringent. Here we propose to follow instead a dynamic path starting from the
gas confined in a rotating ring. The large moment of inertia of the fluid
facilitates the access to states with a large angular momentum, corresponding
to a giant vortex. The initial ring-shaped trapping potential is then
adiabatically transformed into a harmonic confinement, which brings the
interacting atomic gas in the desired quantum Hall regime. We provide clear
numerical evidence that for a relatively broad range of initial angular
frequencies, the giant vortex state is adiabatically connected to the bosonic
Laughlin state, and we discuss the scaling to many particles.Comment: 9 pages, 5 figure
Collective modes and the broken symmetry of a rotating attractive Bose gas in an anharmonic trap
We study the rotational properties of an attractively interacting Bose gas in
a quadratic + quartic potential. The low-lying modes of both rotational ground
state configurations, namely the vortex and the center of mass rotating states,
are solved. The vortex excitation spectrum is positive for weak interactions
but the lowest modes decrease rapidly to negative values when the interactions
become stronger. The broken rotational symmetry involved in the center of mass
rotating state induces the appearance of an extra zero-energy mode in the
Bogoliubov spectrum. The excitations of the center of mass rotational state
also demonstrate the coupling between the center of mass and relative motions.Comment: 4 pages, 3 eps figures (2 in color) v2: changes in Title, all
figures, in text (especially in Sec III) and in Reference
Vortex Rings in Fast Rotating Bose-Einstein Condensates
When Bose-Eintein condensates are rotated sufficiently fast, a giant vortex
phase appears, that is the condensate becomes annular with no vortices in the
bulk but a macroscopic phase circulation around the central hole. In a former
paper [M. Correggi, N. Rougerie, J. Yngvason, {\it arXiv:1005.0686}] we have
studied this phenomenon by minimizing the two dimensional Gross-Pitaevskii
energy on the unit disc. In particular we computed an upper bound to the
critical speed for the transition to the giant vortex phase. In this paper we
confirm that this upper bound is optimal by proving that if the rotation speed
is taken slightly below the threshold there are vortices in the condensate. We
prove that they gather along a particular circle on which they are evenly
distributed. This is done by providing new upper and lower bounds to the GP
energy.Comment: to appear in Archive of Rational Mechanics and Analysi
Vortices in multicomponent Bose-Einstein condensates
We review the topic of quantized vortices in multicomponent Bose-Einstein
condensates of dilute atomic gases, with an emphasis on that in two-component
condensates. First, we review the fundamental structure, stability and dynamics
of a single vortex state in a slowly rotating two-component condensates. To
understand recent experimental results, we use the coupled Gross-Pitaevskii
equations and the generalized nonlinear sigma model. An axisymmetric vortex
state, which was observed by the JILA group, can be regarded as a topologically
trivial skyrmion in the pseudospin representation. The internal, coherent
coupling between the two components breaks the axisymmetry of the vortex state,
resulting in a stable vortex molecule (a meron pair). We also mention
unconventional vortex states and monopole excitations in a spin-1 Bose-Einstein
condensate. Next, we discuss a rich variety of vortex states realized in
rapidly rotating two-component Bose-Einstein condensates. We introduce a phase
diagram with axes of rotation frequency and the intercomponent coupling
strength. This phase diagram reveals unconventional vortex states such as a
square lattice, a double-core lattice, vortex stripes and vortex sheets, all of
which are in an experimentally accessible parameter regime. The coherent
coupling leads to an effective attractive interaction between two components,
providing not only a promising candidate to tune the intercomponent interaction
to study the rich vortex phases but also a new regime to explore vortex states
consisting of vortex molecules characterized by anisotropic vorticity. A recent
experiment by the JILA group vindicated the formation of a square vortex
lattice in this system.Comment: 69 pages, 25 figures, Invited review article for International
Journal of Modern Physics
Inhomogeneous Vortex Patterns in Rotating Bose-Einstein Condensates
We consider a 2D rotating Bose gas described by the Gross-Pitaevskii (GP)
theory and investigate the properties of the ground state of the theory for
rotational speeds close to the critical speed for vortex nucleation. While one
could expect that the vortex distribution should be homogeneous within the
condensate we prove by means of an asymptotic analysis in the strongly
interacting (Thomas-Fermi) regime that it is not. More precisely we rigorously
derive a formula due to Sheehy and Radzihovsky [Phys. Rev. A 70, 063620(R)
(2004)] for the vortex distribution, a consequence of which is that the vortex
distribution is strongly inhomogeneous close to the critical speed and
gradually homogenizes when the rotation speed is increased. From the
mathematical point of view, a novelty of our approach is that we do not use any
compactness argument in the proof, but instead provide explicit estimates on
the difference between the vorticity measure of the GP ground state and the
minimizer of a certain renormalized energy functional.Comment: 41 pages, journal ref: Communications in Mathematical Physics: Volume
321, Issue 3 (2013), Page 817-860, DOI : 10.1007/s00220-013-1697-
Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases
<p>Abstract</p> <p>Background</p> <p>Prion diseases are fatal neurodegenerative disorders that accompany an accumulation of the disease-associated form(s) of prion protein (PrP<sup>Sc</sup>) in the central nervous system. The neuropathological changes in the brain begin with focal deposits of PrP<sup>Sc</sup>, followed by pathomorphological abnormalities of axon terminal degeneration, synaptic loss, atrophy of dendritic trees, and eventual neuronal cell death in the lesions. However, the underlying molecular basis for these neuropathogenic abnormalities is not fully understood.</p> <p>Results</p> <p>In a proteomic analysis of soluble proteins in the brains of mice challenged intracerebrally with scrapie prion (Obihiro I strain), we found that the amount of the full-length form of collapsin response mediator protein-2 (CRMP-2; 61 kDa) decreased in the late stages of the disease, while the amount of its truncated form (56 kDa) increased to comparable levels observed for the full-length form. Detailed analysis by liquid chromatography-electrospray ionization-tandem mass spectrometry showed that the 56-kDa form (named CRMP-2-ΔC) lacked the sequence from serine<sup>518 </sup>to the C-terminus, including the C-terminal phosphorylation sites important for the regulation of axonal growth and axon-dendrite specification in developing neurons. The invariable size of the mRNA transcript in Northern blot analysis suggested that the truncation was due to post-translational proteolysis. By overexpression of CRMP-2-ΔC in primary cultured neurons, we observed the augmentation of the development of neurite branch tips to the same levels as for CRMP-2<sup>T514A/T555A</sup>, a non-phosphorylated mimic of the full-length protein. This suggests that the increased level of CRMP-2-ΔC in the brain modulates the integrity of neurons, and may be involved in the pathogenesis of the neuronal abnormalities observed in the late stages of the disease.</p> <p>Conclusions</p> <p>We identified the presence of CRMP-2-ΔC in the brain of a murine model of prion disease. Of note, C-terminal truncations of CRMP-2 have been recently observed in models for neurodegenerative disorders such as ischemia, traumatic brain injury, and Wallerian degeneration. While the structural identity of CRMP-2-ΔC in those models remains unknown, the present study should provide clues to the molecular pathology of degenerating neurons in prion diseases in connection with other neurodegenerative disorders.</p
CRMP5 Regulates Generation and Survival of Newborn Neurons in Olfactory and Hippocampal Neurogenic Areas of the Adult Mouse Brain
The Collapsin Response Mediator Proteins (CRMPs) are highly expressed in the developing brain, and in adult brain areas that retain neurogenesis, ie: the olfactory bulb (OB) and the dentate gyrus (DG). During brain development, CRMPs are essentially involved in signaling of axon guidance and neurite outgrowth, but their functions in the adult brain remain largely unknown. CRMP5 has been initially identified as the target of auto-antibodies involved in paraneoplasic neurological diseases and further implicated in a neurite outgrowth inhibition mediated by tubulin binding. Interestingly, CRMP5 is also highly expressed in adult brain neurogenic areas where its functions have not yet been elucidated. Here we observed in both neurogenic areas of the adult mouse brain that CRMP5 was present in proliferating and post-mitotic neuroblasts, while they migrate and differentiate into mature neurons. In CRMP5−/− mice, the lack of CRMP5 resulted in a significant increase of proliferation and neurogenesis, but also in an excess of apoptotic death of granule cells in the OB and DG. These findings provide the first evidence that CRMP5 is involved in the generation and survival of newly generated neurons in areas of the adult brain with a high level of activity-dependent neuronal plasticity
- …