201 research outputs found

    Novel performance-based technique for predicting maintenance strategy of bitumen stabilised ballast

    Get PDF
    Despite being the most used worldwide, railway ballasted tracks presents high maintenance cost related to ballast settlement and particle degradation. With the aim of reducing life cycle costs, bitumen stabilised ballast (BSB) has been recently proposed as a relatively cheap alternative maintenance solution to be applied to existing tracks. This study aims at assessing the potential advantages of this technology, defining a novel maintenance strategy of traditional ballasted track- beds. A protocol for the application of the BSB technology and its associated maintenance strategy is defined. To estimate minor and major maintenance operations of BSB scenario in comparison to traditional ballasted track-bed, an integrated model, based on laboratory tests, combining the evolution of track irregularities and ballast contamination with traffic, was used. Results together with a sensitivity analysis related to main parameters adopted revealed that the application of BSB is expected to provide a significant increase of intervals between both minor and major maintenance activities

    Casimir force between sharp-shaped conductors

    Full text link
    Casimir forces between conductors at the sub-micron scale cannot be ignored in the design and operation of micro-electromechanical (MEM) devices. However, these forces depend non-trivially on geometry, and existing formulae and approximations cannot deal with realistic micro-machinery components with sharp edges and tips. Here, we employ a novel approach to electromagnetic scattering, appropriate to perfect conductors with sharp edges and tips, specifically to wedges and cones. The interaction of these objects with a metal plate (and among themselves) is then computed systematically by a multiple-scattering series. For the wedge, we obtain analytical expressions for the interaction with a plate, as functions of opening angle and tilt, which should provide a particularly useful tool for the design of MEMs. Our result for the Casimir interactions between conducting cones and plates applies directly to the force on the tip of a scanning tunneling probe; the unexpectedly large temperature dependence of the force in these configurations should attract immediate experimental interest

    Measurement of the Casimir force between parallel metallic surfaces

    Full text link
    We report on the measurement of the Casimir force between conducting surfaces in a parallel configuration. The force is exerted between a silicon cantilever coated with chromium and a similar rigid surface and is detected looking at the shifts induced in the cantilever frequency when the latter is approached. The scaling of the force with the distance between the surfaces was tested in the 0.5 - 3.0 ÎĽ\mum range, and the related force coefficient was determined at the 15% precision level.Comment: 4 Figure

    A novel experimental approach for the detection of the dynamic Casimir effect

    Full text link
    The Casimir effect is a well-known macroscopic consequence of quantum vacuum fluctuations, but whereas the static effect (Casimir force) has long been observed experimentally, the dynamic Casimir effect is up to now undetected. From an experimental viewpoint a possible detection would imply the vibration of a mirror at gigahertz frequencies. Mechanical motions at such frequencies turn out to be technically unfeasible. Here we present a different experimental scheme where mechanical motions are avoided, and the results of laboratory tests showing that the scheme is practically feasible. We think that at present this approach gives the only possibility of detecting this phenomenon.Comment: Submitted to the Physical Review Letters. RevTeX. 4 pages, 2 figure

    Casimir-like tunneling-induced electronic forces

    Full text link
    We study the quantum forces that act between two nearby conductors due to electronic tunneling. We derive an expression for these forces by calculating the flux of momentum arising from the overlap of evanescent electronic fields. Our result is written in terms of the electronic reflection amplitudes of the conductors and it has the same structure as Lifshitz's formula for the electromagnetically mediated Casimir forces. We evaluate the tunneling force between two semiinfinite conductors and between two thin films separated by an insulating gap. We discuss some applications of our results.Comment: 8 pages, 3 figs, submitted to Proc. of QFEXT'05, to be published in J. Phys.

    Existence of a Meromorphic Extension of Spectral Zeta Functions on Fractals

    Full text link
    We investigate the existence of the meromorphic extension of the spectral zeta function of the Laplacian on self-similar fractals using the classical results of Kigami and Lapidus (based on the renewal theory) and new results of Hambly and Kajino based on the heat kernel estimates and other probabilistic techniques. We also formulate conjectures which hold true in the examples that have been analyzed in the existing literature

    Casimir interaction between two concentric cylinders: exact versus semiclassical results

    Get PDF
    The Casimir interaction between two perfectly conducting, infinite, concentric cylinders is computed using a semiclassical approximation that takes into account families of classical periodic orbits that reflect off both cylinders. It is then compared with the exact result obtained by the mode-by-mode summation technique. We analyze the validity of the semiclassical approximation and show that it improves the results obtained through the proximity theorem.Comment: 28 pages, 5 figures include

    Repulsive Casimir forces

    Get PDF
    We discuss repulsive Casimir forces between dielectric materials with non trivial magnetic susceptibility. It is shown that considerations based on naive pair-wise summation of Van der Waals and Casimir Polder forces may not only give an incorrect estimate of the magnitude of the total Casimir force, but even the wrong sign of the force when materials with high dielectric and magnetic response are involved. Indeed repulsive Casimir forces may be found in a large range of parameters, and we suggest that the effect may be realized in known materials. The phenomenon of repulsive Casimir forces may be of importance both for experimental study and for nanomachinery applications

    The Pan-STARRS Moving Object Processing System

    Full text link
    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves > 99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a non-physical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains >99.5% efficient at detecting objects on a single night but drops to 80% efficiency at producing orbits for objects detected on multiple nights. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.Comment: 57 Pages, 26 Figures, 13 Table
    • …
    corecore