7 research outputs found

    Evaluating mesoscale model predictions and parameterisations against SGP ARM data on a seasonal time scale

    No full text
    International audienceThis study evaluates the predictions of radiative and cloud-related processes of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). It is based on extensive comparison of three-dimensional forecast runs with local data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site collected at the Central Facility in Lamont, Oklahoma, over a seasonal timescale. Time series are built from simulations performed every day from 15 April to 23 June 1998 with a 10-km horizontal resolution. For the one single column centered on this site, a reasonable agreement is found between observed and simulated precipitation and surface fields time series. Indeed, the model is able to reproduce the timing and vertical extent of most major cloudy events, as revealed by radiative flux measurements, radar, and lidar data. The model encounters more difficulty with the prediction of cirrus and shallow clouds whereas deeper and long-lasting systems are much better captured. Day-to-day fluctuations of surface radiative fluxes, mostly explained by cloud cover changes, are similar in simulations and observations. Nevertheless, systematic differences have been identified. The downward longwave flux is overestimated under moist clear sky conditions. It is shown that the bias disappears with more sophisticated parameterizations such as Rapid Radiative Transfer Model (RRTM) and Community Climate Model, version 2 (CCM2) radiation schemes. The radiative impact of aerosols, not taken into account by the model, explains some of the discrepancies found under clear sky conditions. The differences, small compared to the short timescale variability, can reach up to 30 W m-2 on a 24-h timescale. Overall, these results contribute to strengthen confidence in the realism of mesoscale forecast simulations. They also point out model weaknesses that may affect regional climate simulations: representation of low clouds, cirrus, and aerosols. Yet, the results suggest that these finescale simulations are appropriate for investigating parameterizations of cloud microphysics and radiative properties, as cloud timing and vertical extension are both reasonably captured

    Windthrow damage in Picea abies is associated with physical and chemical stem wood properties

    No full text
    On 26 December 1999, the windstorm "Lothar" hit large parts of western and central Europe. In Switzerland, windthrow losses reached 12.7 Mio m(3) of timber, corresponding to 2.8 times the annual national timber harvest. Although these exceptional losses were due to extreme peak velocities, recent changes in tree nutrition may have increased forest susceptibility. Previous controlled environment experiments revealed that wood density (associated with wood stiffness) tends to increase in elevated CO2, and to decrease when N-availability is enhanced (e.g., by soluble N-deposition). Such changes in wood quality could theoretically influence the risk of wind damage. We used the "Lothar" windstorm as a "natural experiment" to explore links between damage and wood properties. In 104 windthrow sites across the Swiss Plateau, more than 1,600 wood cores from (1) broken, (2) uprooted and (3) still standing (not damaged) spruce trees (Picea abies) were collected in February and March 2000. Wood properties, treering width and chemistry of the wood samples were analysed. Broken trees showed wider treerings in the decade 1990-99 compared to non-broken trees (either uprooted or undamaged trees). Broken trees also showed lower non-structural carbohydrate (NSC) concentration in sapwood, reflecting active structural carbohydrate sinks associated with fast growth. There was also a trend for higher tissue N-concentrations in broken trees. No significant differences between damage types were found in wood density and wood shrinkage during desiccation. We conclude that stem breakage risk of P. abies is associated with a stimulation of growth in the past decade and with changes in tree nutritional status. However, the risk for windthrow of whole spruce trees (uprooted but not broken) was not related to the studied wood parameters
    corecore