26 research outputs found

    EXPERIMENTAL STUDY ON NH3/H2/AIR COMBUSTION IN SPARK-IGNITION ENGINE CONDITIONS

    Get PDF
    International audienceThe mitigation of climate change implies the increasing use of variable renewable energy sources. Energy storage and transport solutions will contribute to ensure the stability, reliability and flexibility of the energy systems. Ammonia is a well-known chemical of formula NH3 and, amongst other electrofuels, a promising energy carrier and carbon-free combustible fuel. There-fore, it is of significant interest to study ammonia combustion systems. The present investiga-tion focusses on premixed ammonia/hydrogen/air combustion to assess stability ranges, perfor-mance and pollutant emissions by means of a systematic parametric study, in the purpose of optimization in the case of a current spark-ignition engine. Gaseous ammonia blends with a wide range of hydrogen fuel fractions and equivalence ratio were tested at two different loads. Results show a power output and indicated efficiency benefit of low H2 enrichment for slightly rich and slightly lean mixtures, respectively. Hydrogen is therefore mainly an ignition promoter, rather than a global combustion promoter assumedly due to high thermal losses. A small amount of H2, along with supercharged operation greatly improves the performances of the engine and its stability, thus rendering NH3 a very suitable fuel for SI-engines in case of in-situ H2 gener-ation. Hydrogen also mitigates unburned NH3 emissions, yet not sufficiently but those could be combined with the evenly elevated NOx emissions in dedicated selective catalytic reduction systems

    Performance and Emissions of an Ammonia-Fueled SI Engine with Hydrogen Enrichment

    Get PDF
    International audienceWhile the optimization of the internal combustion engine (ICE) remains a very important topic, alternative fuels are also expected to play a significant role in the reduction of CO2 emissions. High energy densities and handling ease are their main advantages amongst other energy carriers. Ammonia (NH3) additionally contains no carbon and has a worldwide existing transport and storage infrastructure. It could be produced directly from renewable electricity, water and air, and is thus currently considered as a smart energy carrier and combustion fuel. However, ammonia presents a low combustion intensity and the risk of elevated nitrogen-based emissions, thus rendering in-depth investigation of its suitability as an ICE fuel necessary.In the present study, a recent single-cylinder spark-ignition engine is fueled with gaseous ammonia/hydrogen/air mixtures at various hydrogen fractions, equivalence ratios and intake pressures. A small hydrogen fraction is used as combustion promoter and might be generated in-situ through NH3 catalytic or heat-assisted dissociation. The in-cylinder pressure and exhaust concentrations of selected species are recorded and analyzed. Results show that ammonia is a very suitable fuel for SI engine operation, since high power outputs could be achieved with indicated efficiencies higher than 37% by taking advantage of the promoting effects of supercharging and hydrogen enrichment around 10% by volume. High NOx and unburned NH3 exhaust concentrations were also observed under fuel-lean and fuel-rich conditions, respectively. While hydrogen enrichment promotes the NH3 combustion efficiency and helps reducing its exhaust concentration, it has a promoting effect on NOx formation, assumedly due to higher flame temperatures. Therefore, it is recommended to take advantage of the simultaneous presence of exhaust heat, NOx and NH3 in a dedicated after-treatment device to ensure the economic and environmental viability of future ammonia-fueled engine systems

    Uncertainty in measuring laminar burning velocity from expanding methane-air flames at low pressures

    Get PDF
    International audienceThe experimental determination of laminar burning velocity remains essential to evaluate the combustion potential of any fuels but also to validate kinetic mechanisms. Recently, researchers are making great efforts to improve the accuracy of the different setups and techniques to determine this parameter. This work proposes an attempt to summarize the different factors contributing to the uncertainty of the expanding spherical flame method. In particular, the validity of two hypothesis (adiabatic flame propagation and thin flame front) is discussed in the case of stoichiometric methane-air flames in low-pressure environment (from 0.2 to 2 bar). Last, the effect of spark electrode diameters was also considered (0.2, 0.5 and 1 mm)

    Experimental study of RCCI engine – ammonia combustion with diesel pilot injection

    Get PDF
    Ammonia is seen as one potential carbon-free fuel, especially for maritime applications. Since SI engines require a significant ignition energy for large cylinders, engine manufacturers are targeting the use of ammonia in Compressed Ignition (CI) engines. Because of ammonia’s high auto-ignition temperature, to ensure that the combustion occurs in a CI engine, a pilot injection of a higher reactivity fuel must be used, as in Reactivity Controlled Compression Ignition engines. In the present study, the objective was to provide first unique data about the efficiency and pollutant emissions for a single cylinder compression ignition engine with a diesel energy fraction as minimum as possible (down to less than 2%) at a constant 1000 rpm. Experiments cover the impact of a wide variation of equivalence ratios of NH3-air mixtures from ultra-lean to slightly rich conditions. CO2, CO, NH3, NOX, N2O, UHC values were measured with a Fourier Transform Infrared (FTIR) spectrometer. Results of CO2 and N2O are presented as CO2-Equivalent (CO2eq) impact. Combustion stability was achieved for most conditions but not for the leanest ones. Furthermore, under lean conditions for a similar ammonia content, the minimum CO2eq is reached with a slightly higher Diesel Energy Fraction than the minimum possible. Finally, both leanest and richest conditions present a higher level of CO2eq compared to the range of ammonia/air mixtures at stoichiometry or just below

    Fuel influence on combustion in spark-ignition engine : flame stretch impact

    No full text
    Dans un contexte de diminution des émissions polluantes émises par les moteurs à combustion interne, le secteur des transports assiste à une amélioration des motorisations mais également à une diversification des carburants pour l’automobile. L’utilisation de ces différents carburants entraîne souvent un impact sur les performances de la combustion. Dans le cas du moteur à allumage commandé, la performance dépend du dégagement d’énergie, image de la vitesse de la combustion, soit du front de flamme consommant le mélange air-carburant. Or toute flamme en expansion est théoriquement soumise à des effets de courbure et de cisaillement, toutes deux contributions de l’étirement. La réponse à l’étirement étant propre à chaque type de mélange air-carburant (lié au carburant proprement dit, à la richesse du mélange, à la dilution …), ce travail de thèse est centré sur la compréhension de l’impact de l’étirement sur les performances des carburants dans les moteurs à allumage commandé. Pour cela, différents mélanges air-carburant similaires du point de vue des propriétés thermodynamiques et des vitesses fondamentales de combustion laminaire mais avec des sensibilités à l’étirement différentes ont été sélectionnés. Ces mélanges ont ensuite été étudiés dans différentes configurations expérimentales et à l’aide de différentes techniques de mesure: moteur monocylindre opaque et à accès optiques, chambre sphérique de combustion turbulente. Les résultats montrent que les propriétés de sensibilités à l’étirement déterminées en régime laminaire comme la longueur de Markstein et le nombre de Lewis sont indicatrices du comportement des mélanges en combustion turbulente, comme dans la chambre de combustion caractéristique des moteurs à allumage commandé, et sont des paramètres à prendre en considération afin de prédire les performances plus globales de ces carburants que ce soit expérimentalement qu’en simulation.In a context of decreasing pollutant emissions, the transport sector is facing an improvement of engine concept as well as a fuel diversification. The use of these different fuels often involves an impact on the combustion performance itself. In the case of Spark ignition engine, the efficiency is a function of the released heat, image of the combustion speed, i.e. the flame front speed consuming the air-fuel mixture. It is well known that every expanding flame is submitted to flame curvature and strain rate which are both contributors to flame stretch. As the answer of each air-fuel mixture (i.e. the fuel itself, the equivalence ratio, the dilution …) is different to flame stretch, the objective of this work is to understand flame stretch impact on fuel performance in Spark-Ignition engines. To achieve this goal, different fuel-air mixtures with similar unstretched laminar burning speed and thermodynamic properties but different responses to stretch were selected. Those mixtures were then studied with different experimental devices with different measurement techniques: single-cylinder metallic and optical engines, turbulent combustion spherical vessel. Results show that flame stretch sensitivity properties such as Markstein length and Lewis number, determined in laminar combustion regime, are relevant parameters to describe the flame propagation in turbulent combustion as in the combustion chamber of the Spark-Ignition engine and need to be taken into consideration to evaluate global performance of these fuels, experimentally and also in modeling simulation

    Influence de la nature du carburant sur la combustion en moteur à allumage commandé : impact de l’étirement de flamme

    No full text
    In a context of decreasing pollutant emissions, the transport sector is facing an improvement of engine concept as well as a fuel diversification. The use of these different fuels often involves an impact on the combustion performance itself. In the case of Spark ignition engine, the efficiency is a function of the released heat, image of the combustion speed, i.e. the flame front speed consuming the air-fuel mixture. It is well known that every expanding flame is submitted to flame curvature and strain rate which are both contributors to flame stretch. As the answer of each air-fuel mixture (i.e. the fuel itself, the equivalence ratio, the dilution …) is different to flame stretch, the objective of this work is to understand flame stretch impact on fuel performance in Spark-Ignition engines. To achieve this goal, different fuel-air mixtures with similar unstretched laminar burning speed and thermodynamic properties but different responses to stretch were selected. Those mixtures were then studied with different experimental devices with different measurement techniques: single-cylinder metallic and optical engines, turbulent combustion spherical vessel. Results show that flame stretch sensitivity properties such as Markstein length and Lewis number, determined in laminar combustion regime, are relevant parameters to describe the flame propagation in turbulent combustion as in the combustion chamber of the Spark-Ignition engine and need to be taken into consideration to evaluate global performance of these fuels, experimentally and also in modeling simulation.Dans un contexte de diminution des émissions polluantes émises par les moteurs à combustion interne, le secteur des transports assiste à une amélioration des motorisations mais également à une diversification des carburants pour l’automobile. L’utilisation de ces différents carburants entraîne souvent un impact sur les performances de la combustion. Dans le cas du moteur à allumage commandé, la performance dépend du dégagement d’énergie, image de la vitesse de la combustion, soit du front de flamme consommant le mélange air-carburant. Or toute flamme en expansion est théoriquement soumise à des effets de courbure et de cisaillement, toutes deux contributions de l’étirement. La réponse à l’étirement étant propre à chaque type de mélange air-carburant (lié au carburant proprement dit, à la richesse du mélange, à la dilution …), ce travail de thèse est centré sur la compréhension de l’impact de l’étirement sur les performances des carburants dans les moteurs à allumage commandé. Pour cela, différents mélanges air-carburant similaires du point de vue des propriétés thermodynamiques et des vitesses fondamentales de combustion laminaire mais avec des sensibilités à l’étirement différentes ont été sélectionnés. Ces mélanges ont ensuite été étudiés dans différentes configurations expérimentales et à l’aide de différentes techniques de mesure: moteur monocylindre opaque et à accès optiques, chambre sphérique de combustion turbulente. Les résultats montrent que les propriétés de sensibilités à l’étirement déterminées en régime laminaire comme la longueur de Markstein et le nombre de Lewis sont indicatrices du comportement des mélanges en combustion turbulente, comme dans la chambre de combustion caractéristique des moteurs à allumage commandé, et sont des paramètres à prendre en considération afin de prédire les performances plus globales de ces carburants que ce soit expérimentalement qu’en simulation
    corecore