16 research outputs found

    Origin and significance of two pairs of head tentacles in the radiation of euthyneuran sea slugs and land snails

    Get PDF
    The gastropod infraclass Euthyneura comprises at least 30,000 species of snails and slugs, including nudibranch sea slugs, sea hares and garden snails, that flourish in various environments on earth. A unique morphological feature of Euthyneura is the presence of two pairs of sensory head tentacles with different shapes and functions: the anterior labial tentacles and the posterior rhinophores or eyestalks. Here we combine molecular phylogenetic and microanatomical evidence that suggests the two pairs of head tentacles have originated by splitting of the original single tentacle pair (with two parallel nerve cords in each tentacle) as seen in many other gastropods. Minute deep-sea snails of Tjaernoeia and Parvaplustrum, which in our phylogeny belonged to the euthyneurans' sister group (new infraclass Mesoneura), have tentacles that are split along much of their lengths but associated nerves and epidermal sense organs are not as specialized as in Euthyneura. We suggest that further elaboration of cephalic sense organs in Euthyneura closely coincided with their ecological radiation and drastic modification of body plans. The monotypic family Parvaplustridae nov., superfamily Tjaernoeioidea nov. (Tjaernoeiidae + Parvaplustridae), and new major clade Tetratentaculata nov. (Mesoneura nov. + Euthyneura) are also proposed based on their phylogenetic relationships and shared morphological traits

    At the limits of a successful body plan-3D microanatomy, histology and evolution of Helminthope (Mollusca: Heterobranchia: Rhodopemorpha), the most worm-like gastropod

    Get PDF
    Background: Gastropods are among the most diverse animal clades, and have successfully colonized special habitats such as the marine sand interstitial. Specialized meiofaunal snails and slugs are tiny and worm-shaped. They combine regressive features - argued to be due to progenetic tendencies - with convergent adaptations. Microscopic size and concerted convergences make morphological examination non-trivial and hamper phylogenetic reconstructions. The enigmatic turbellarian-like Rhodopemorpha are a small group that has puzzled systematists for over a century. A preliminary molecular framework places the group far closer to the root of Heterobranchia - one of the major gastropod groups - than previously suggested. The poorly known meiofaunal Helminthope psammobionta Salvini-Plawen, 1991 from Bermuda is the most worm-shaped free-living gastropod and shows apparently aberrant aspects of anatomy. Its study may give important clues to understand the evolution of rhodopemorphs among basal heterobranchs versus their previously thought origin among `higher' euthyneuran taxa. Results: We describe the 3D-microanatomy of H. psammobionta using three-dimensional digital reconstruction based on serial semithin histological sections. The new dataset expands upon the original description and corrects several aspects. Helminthope shows a set of typical adaptations and regressive characters present in other mesopsammic slugs (called `meiofaunal syndrome' herein). The taxonomically important presence of five separate visceral loop ganglia is confirmed, but considerable further detail of the complex nervous system are corrected and revealed. The digestive and reproductive systems are simple and modified to the thread-like morphology of the animal; the anus is far posterior. There is no heart; the kidney resembles a protonephridium. Data on all organ systems are compiled and compared to Rhodope. Conclusions: Helminthope is related to Rhodope sharing unique apomorphies. We argue that the peculiar kidney, configuration of the visceral loop and simplicity or lack of other organs in Rhodopemorpha are results of progenesis. The posterior shift of the anus in Helminthope is interpreted as a peramorphy, i.e. hypertrophy of body length early in ontogeny. Our review of morphological and molecular evidence is consistent with an origin of Rhodopemorpha slugs among shelled `lower Heterobranchia'. Previously thought shared `diagnostic' features such as five visceral ganglia are either plesiomorphic or convergent, while euthyneury and a double-rooted cerebral nerve likely evolved independently in Rhodopemorpha and Euthyneura

    Really a “secondary gill under the skin”? Unveiling “dorsal vessels” in freshwater slugs (Mollusca, Panpulmonata, Acochlidimorpha)

    Get PDF
    The freshwater slugs of the genus Acochlidium (Heterobranchia, Gastropoda, and Acochlidimorpha) are peculiar, one to two centimeter sized animals found only in small coastal rivers and streams of Southeast Asian and Western Pacific islands. When first described by Bücking, the author observed a branching “net of dendritic vessels connected to the heart,” which he assumed to have replaced the original gastropod gill. In the present study, we compare the renopericardial systems of four Acochlidium species in microanatomical, histological and ultrastructural detail and identify where exactly the enigmatic, subepidermal “dorsal vessels” connect to the renopericardial system to examine if they can really function as a gill. Acochlidium have elaborate renopericardial systems compared to their ancestrally marine and also freshwater relatives. The primary site of ultrafiltration is the epicardium of the atrium with podocytes as usual for gastropods. The “dorsal vessels” in Acochlidium are extensions of the outer epithelium of the pericardial cavity and represent true vessels, that is, coelomatic channels, having an endothelium with podocytes. Hence, they considerably enlarge the site of ultrafiltration increasing the pericardial surface. “Dorsal vessels” in Acochlidium are therefore not homologous to externally similar morphological structures in Sacoglossa (marine panpulmonate slugs and snails). The multiplication of renopericardioducts in Acochlidium is a unique feature within Mollusca that enhances the negative pressure necessary for ultrafiltration in the thin, tube-like dorsal vessels and as a consequence the transport of primary urine from the pericardium to the kidney. The circulatory and excretory systems in Acochlidium are adaptations to a lifestyle in their freshwater environment in which snail bodies are hyposmotic and accrue considerable influx of surplus water into the body, which needs to be expelled

    Ringiculid bubble snails recovered as the sister group to sea slugs (Nudipleura)

    Get PDF
    Euthyneuran gastropods represent one of the most diverse lineages in Mollusca (with over 30,000 species), play significant ecological roles in aquatic and terrestrial environments and affect many aspects of human life. However, our understanding of their evolutionary relationships remains incomplete due to missing data for key phylogenetic lineages. The present study integrates such a neglected, ancient snail family Ringiculidae into a molecular systematics of Euthyneura for the first time, and is supplemented by the first microanatomical data. Surprisingly, both molecular and morphological features present compelling evidence for the common ancestry of ringiculid snails with the highly dissimilar Nudipleura-the most species-rich and well-known taxon of sea slugs (nudibranchs and pleurobranchoids). A new taxon name Ringipleura is proposed here for these long-lost sisters, as one of three major euthyneuran clades with late Palaeozoic origins, along with Acteonacea (Acteonoidea + Rissoelloidea) and Tectipleura (Euopisthobranchia + Panpulmonata). The early Euthyneura are suggested to be at least temporary burrowers with a characteristic 'bubble' shell, hypertrophied foot and headshield as exemplified by many extant subtaxa with an infaunal mode of life, while the expansion of the mantle might have triggered the explosive Mesozoic radiation of the clade into diverse ecological niches

    Molecular and morphological analyses reveal pseudocryptic diversity in Micromelo undatus (Brugui ere, 1792) (Gastropoda: Heterobranchia: Aplustridae)

    Get PDF
    The genus Micromelo (family Aplustridae) occurs in almost all tropical and subtropical waters across the globe, with the exception of the Eastern Pacific. Most authors consider Micromelo undatus (Bruguière, 1792) as the only valid species in this genus. This study examines populations of specimens identified as M. undatus across its geographic range, using morphological and genetic data from two mitochondrial genes (16S and CO1) and one nuclear gene (Histone H3). The results reveal that M. undatus is a complex of four species with consistent genetic and anatomical differences. A literature review and evaluation of type material indicates that available names exist for three of the four species. Micromelo guamensis, M. undatus and M. scriptus are resurrected for species found in the Western Pacific, the Atlantic Ocean, and widespread in the Indo-Pacific, respectively. A new name is introduced for another species found in the Western Pacific, namely Micromelo barbarae sp. nov. and a neotype is designated for the type species of the genus M. undatus.publishedVersio

    Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics

    Get PDF
    Background Heterobranchia is a diverse clade of marine, freshwater, and terrestrial gastropod molluscs. It includes such disparate taxa as nudibranchs, sea hares, bubble snails, pulmonate land snails and slugs, and a number of (mostly small-bodied) poorly known snails and slugs collectively referred to as the “lower heterobranchs”. Evolutionary relationships within Heterobranchia have been challenging to resolve and the group has been subject to frequent and significant taxonomic revision. Mitochondrial (mt) genomes can be a useful molecular marker for phylogenetics but, to date, sequences have been available for only a relatively small subset of Heterobranchia. Results To assess the utility of mitochondrial genomes for resolving evolutionary relationships within this clade, eleven new mt genomes were sequenced including representatives of several groups of “lower heterobranchs”. Maximum likelihood analyses of concatenated matrices of the thirteen protein coding genes found weak support for most higher-level relationships even after several taxa with extremely high rates of evolution were excluded. Bayesian inference with the CAT + GTR model resulted in a reconstruction that is much more consistent with the current understanding of heterobranch phylogeny. Notably, this analysis recovered Valvatoidea and Orbitestelloidea in a polytomy with a clade including all other heterobranchs, highlighting these taxa as important to understanding early heterobranch evolution. Also, dramatic gene rearrangements were detected within and between multiple clades. However, a single gene order is conserved across the majority of heterobranch clades. Conclusions Analysis of mitochondrial genomes in a Bayesian framework with the site heterogeneous CAT + GTR model resulted in a topology largely consistent with the current understanding of heterobranch phylogeny. However, mitochondrial genomes appear to be too variable to serve as good phylogenetic markers for robustly resolving a number of deeper splits within this clade.publishedVersio

    Ringiculid bubble snails recovered as the sister group to sea slugs (Nudipleura)

    Get PDF
    Euthyneuran gastropods represent one of the most diverse lineages in Mollusca (with over 30,000 species), play significant ecological roles in aquatic and terrestrial environments and affect many aspects of human life. However, our understanding of their evolutionary relationships remains incomplete due to missing data for key phylogenetic lineages. The present study integrates such a neglected, ancient snail family Ringiculidae into a molecular systematics of Euthyneura for the first time, and is supplemented by the first microanatomical data. Surprisingly, both molecular and morphological features present compelling evidence for the common ancestry of ringiculid snails with the highly dissimilar Nudipleura-the most species-rich and well-known taxon of sea slugs (nudibranchs and pleurobranchoids). A new taxon name Ringipleura is proposed here for these long-lost sisters, as one of three major euthyneuran clades with late Palaeozoic origins, along with Acteonacea (Acteonoidea + Rissoelloidea) and Tectipleura (Euopisthobranchia + Panpulmonata). The early Euthyneura are suggested to be at least temporary burrowers with a characteristic 'bubble' shell, hypertrophied foot and headshield as exemplified by many extant subtaxa with an infaunal mode of life, while the expansion of the mantle might have triggered the explosive Mesozoic radiation of the clade into diverse ecological niches

    Molecular and morphological analyses reveal pseudocryptic diversity in Micromelo undatus (Brugui ere, 1792) (Gastropoda: Heterobranchia: Aplustridae)

    No full text
    The genus Micromelo (family Aplustridae) occurs in almost all tropical and subtropical waters across the globe, with the exception of the Eastern Pacific. Most authors consider Micromelo undatus (Bruguière, 1792) as the only valid species in this genus. This study examines populations of specimens identified as M. undatus across its geographic range, using morphological and genetic data from two mitochondrial genes (16S and CO1) and one nuclear gene (Histone H3). The results reveal that M. undatus is a complex of four species with consistent genetic and anatomical differences. A literature review and evaluation of type material indicates that available names exist for three of the four species. Micromelo guamensis, M. undatus and M. scriptus are resurrected for species found in the Western Pacific, the Atlantic Ocean, and widespread in the Indo-Pacific, respectively. A new name is introduced for another species found in the Western Pacific, namely Micromelo barbarae sp. nov. and a neotype is designated for the type species of the genus M. undatus
    corecore