20 research outputs found

    Flow network controlled shape transformation of a thin membrane through differential fluid storage and surface expansion

    Full text link
    The mechanical properties of a thin, planar material, perfused by an embedded flow network, can be changed locally and globally by the fluid transport and storage, resulting in small or large-scale deformation, such as out-of-plane buckling. Fluid absorption and storage eventually cause the material to locally swell. Different parts can hydrate and swell unevenly, prompting a differential expansion of the surface. In order to computationally study the hydraulically induced differential swelling and buckling of such a membrane, we develop a network model that describes both the membrane shape and fluid movement, coupling mechanics with hydrodynamics. We simulate the time-dependent fluid distribution in the flow network based on a spatially explicit resistor network model with local fluid-storage capacitance. The shape of the surface is modeled by a spring network produced by a tethered mesh discretization, in which local bond rest lengths are adjusted instantaneously according to associated local fluid content in the capacitors in a quasi-static way. We investigate the effects of various designs of the flow network, including overall hydraulic traits (resistance and capacitance) and hierarchical architecture (arrangement of major and minor veins), on the specific dynamics of membrane shape transformation. To quantify these effects, we explore the correlation between local Gaussian curvature and relative stored fluid content in each hierarchy by using linear regression, which reveals that stronger correlations could be induced by less densely connected major veins. This flow-controlled mechanism of shape transformation was inspired by the blooming of flowers through the unfolding of petals. It can potentially offer insights for other reversible motions observed in plants induced by differential turgor and water transport through the xylem vessels, as well as engineering applications

    On the Controls of Leaf-Water Oxygen Isotope Ratios in the Atmospheric Crassulacean Acid Metabolism Epiphyte Tillandsia usneoides1[W][OA]

    No full text
    Previous theoretical work showed that leaf-water isotope ratio (δ18OL) of Crassulacean acid metabolism epiphytes was controlled by the δ18O of atmospheric water vapor (δ18Oa), and observed δ18OL could be explained by both a non-steady-state model and a “maximum enrichment” steady-state model (δ18OL-M), the latter requiring only δ18Oa and relative humidity (h) as inputs. δ18OL, therefore, should contain an extractable record of δ18Oa. Previous empirical work supported this hypothesis but raised many questions. How does changing δ18Oa and h affect δ18OL? Do hygroscopic trichomes affect observed δ18OL? Are observations of changes in water content required for the prediction of δ18OL? Does the leaf need to be at full isotopic steady state for observed δ18OL to equal δ18OL-M? These questions were examined with a climate-controlled experimental system capable of holding δ18Oa constant for several weeks. Water adsorbed to trichomes required a correction ranging from 0.5‰ to 1‰. δ18OL could be predicted using constant values of water content and even total conductance. Tissue rehydration caused a transitory change in δ18OL, but the consequent increase in total conductance led to a tighter coupling with δ18Oa. The non-steady-state leaf water models explained observed δ18OL (y = 0.93*x − 0.07; r2 = 0.98) over a wide range of δ18Oa and h. Predictions of δ18OL-M agreed with observations of δ18OL (y = 0.87*x − 0.99; r2 = 0.92), and when h > 0.9, the leaf did not need to be at isotopic steady state for the δ18OL-M model to predict δ18OL in the Crassulacean acid metabolism epiphyte Tillandsia usneoides

    Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    Get PDF
    Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5–15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters

    Environmental impacts on the diversity of methane-cycling microbes and their resultant function

    No full text
    Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5-15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and call for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters

    Transpiration rate relates to within- and across-species variations in effective path length in a leaf water model of oxygen isotope enrichment

    No full text
    Stable oxygen isotope ratio of leaf water (δ18OL) yields valuable information on many aspects of plant-environment interactions. However, current understanding of the mechanistic controls on δ18OL does not provide complete characterization of effectiv

    Data from: "Recovery following defoliation involves shifts in allocation that favor storage and reproduction over radial growth in black oak"

    No full text
    Data for Wiley et al. in Journal of Ecology<br>"Recovery following defoliation involves shifts in allocation that favor storage and reproduction over radial growth in black oak"<br
    corecore