22 research outputs found

    Small animal models for human immunodeficiency virus (HIV), hepatitis b, and tuberculosis: Proceedings of an NIAID workshop

    Get PDF
    The main advantage of animal models of infectious diseases over in vitro studies is the gain in the understanding of the complex dynamics between the immune system and the pathogen. While small animal models have practical advantages over large animal models, it is crucial to be aware of their limitations. Although the small animal model at least needs to be susceptible to the pathogen under study to obtain meaningful data, key elements of pathogenesis should also be reflected when compared to humans. Well-designed small animal models for HIV, hepatitis viruses and tuberculosis require, additionally, a thorough understanding of the similarities and differences in the immune responses between humans and small animals and should incorporate that knowledge into the goals of the study. To discuss these considerations, the NIAID hosted a workshop on ‘Small Animal Models for HIV, Hepatitis B, and Tuberculosis’ on May 30, 2019. Highlights of the workshop are outlined below

    Peroxisome Proliferator-Activated Receptor-α (<i>PPARα</i>) Expression in a Clinical Population of Pakistani Patients with Type 2 Diabetes and Dyslipidemia

    No full text
    Poor glycemic control and dyslipidemia are hallmarks of type 2 diabetes mellitus (T2DM), which predispose to cardiovascular diseases. Peroxisome proliferator-activated receptor-α (PPARα) has been associated with atherosclerosis, but its role in T2DM is less clear. Previously, we studied PPARα expression levels in diabetics with and without dyslipidemia (DD). In this study we described the association with fasting blood glucose, HbA1c levels and lipid levels of the study population. Patient demography and biochemical data were collected from hospitals in Islamabad, Pakistan, and RT-PCR data of PPARα expression were retrieved from our previous study from the same cohort. We performed t-tests and regression analysis to evaluate the relationships between PPARα expression and demographic and clinical variables. As expected, body mass index and HbA1c were elevated in T2DM and DD patients compared to controls. Blood lipids (total cholesterol, triglycerides, LDL and HDL) were significantly higher in the DD group compared to the other two groups. In the T2DM and DD groups, the PPARα expression was not associated with any of the physical and biochemical parameters measured in this study. Expression of the PPARα gene was independent of blood lipids and glycemic control in this study. Further research is necessary to better understand the biological parameters of PPARα expression

    Potential for Hepatitis C Virus Resistance to Nitazoxanide or Tizoxanide▿

    No full text
    Nitazoxanide and its primary metabolite, tizoxanide, inhibit hepatitis C virus (HCV) replication in HCV replicon systems. To study the potential for resistance, we subjected Huh7 cells harboring HCV replicons to serial passage in 250 μM G418 and increasing concentrations of nitazoxanide or tizoxanide. Passage of the replicon-containing cell lines in either compound resulted in increases in the 50% effective concentrations (EC50s) (7- to 13-fold), EC90s (14- to 36-fold), and 50% cytotoxic concentrations (2- to 4-fold) of both compounds. Serial passage in either compound did not alter the susceptibility of HCV replicons to ribavirin or 2′-C-methylcytidine. Interestingly, serial passage in nitazoxanide or tizoxanide resulted in increased sensitivity to alpha interferon 2b: EC50s and EC90s were reduced three- and eightfold, respectively. Replicons isolated from these cell lines had no greater ability to confer tizoxanide resistance, or increased susceptibility to alpha interferon, than replicons isolated from the parental cell line that had not previously been exposed to nitazoxanide or tizoxanide. These findings are indicative of a cell-mediated activity differing from that of other anti-HCV drugs but complementary with interferon and are consistent with the enhanced response rates observed clinically when nitazoxanide is combined with pegylated interferon therapy. Finally, unlike data for other compounds in advanced clinical development for HCV, these data are consistent with resistance in HCV replicon-containing cell lines conferred by changes in the host and not by mutations in the virus

    Hepatocellular Carcinoma in the Woodchuck Model of Hepatitis B Virus Infection

    Get PDF
    The Eastern woodchuck (Marmota monax) harbors a DNA virus (Woodchuck hepatitis virus [WHV]) that is similar in structure and replicative life cycle to the human hepatitis B virus (HBV). Like HBV, WHV infects the liver and can cause acute and chronic hepatitis. Furthermore, chronic WHV infection in woodchucks usually leads to development of hepatocellular carcinoma (HCC) within the first 2–4 years of life. The woodchuck model has been important in the preclinical evaluation of safety and efficacy of the antiviral drugs now in use for treatment of HBV infection and continues to serve as an important, predictive model for innovative forms of therapy of hepatitis B using antiviral nucleosides and immune response modifiers alone or in combination. Almost all woodchucks that become chronic WHV carriers after experimental neonatal inoculation develop HCC with a median HCC-free survival of 24 months and a median life expectancy of 30–32 months. The woodchuck model of viral induced HCC has been used effectively for the development of new imaging agents for enhancement of detection of hepatic neoplasms by ultrasound and magnetic resonance imaging. The chemoprevention of HCC using long-term antiviral nucleoside therapy has been shown in the woodchuck, and “proof of principal” has been established for some of the innovative, molecular methods for treatment of HCC. The model is available for fundamental investigations of the viral and molecular mechanisms responsible for hepatocarcinogenesis and should have substantial value for future development of innovative methods for chemoprevention and gene therapy of human HCC

    Immunization with Surface Antigen Vaccine Alone and after Treatment with 1-(2-Fluoro-5-Methyl-β-l-Arabinofuranosyl)-Uracil (l-FMAU) Breaks Humoral and Cell-Mediated Immune Tolerance in Chronic Woodchuck Hepatitis Virus Infection

    No full text
    Woodchucks chronically infected with the woodchuck hepatitis virus (WHV) were treated with the antiviral drug 1-(2-fluoro-5-methyl-β-l-arabinofuranosyl)-uracil (l-FMAU) or placebo for 32 weeks. Half the woodchucks in each group then received four injections of surface antigen vaccine during the next 16 weeks. Vaccination alone elicited a low-level antibody response to surface antigen in most carriers but did not affect serum WHV DNA and surface antigen. Carriers treated first with l-FMAU to reduce serum WHV DNA and surface antigen and then vaccinated had a similar low-level antibody response to surface antigen. Following vaccinations, cell-mediated immunity to surface antigen was demonstrated in both groups, independent of serum viral and antigen load, but was significantly enhanced in woodchucks treated with l-FMAU and was broadened to include other viral antigens (core, e, and x antigens and selected core peptides). Cell-mediated immunity and antibody responses to surface antigen were observed after drug discontinuation in half of the carriers that received l-FMAU alone. Surface antigen vaccine alone or in combination with drug broke humoral and cell-mediated immune tolerance in chronic WHV infection, but the combination with drug was more effective. This suggested that a high viral and antigen load in carriers is important in maintaining immunologic tolerance during chronicity. The humoral and cellular immunity associated with the combination of l-FMAU and vaccine resembled that observed in self-limited WHV infection. Such combination therapy represents a potentially useful approach to the control of chronic hepatitis B virus infection in humans

    Preparation of 1,4-disubstituted-1,2,3-triazolo ribonucleosides by Na2CuP2O7 catalyzed azide-alkyne 1,3-dipolar cycloaddition

    No full text
    International audienceIn this study, we describe the synthesis of 1,4-disustituted-1,2,3-triazolo-ribonucleosides by means of 1,3-dipolar cycloaddition between various N-1 propargyl-pyrimidines and 1'-azido2',3',5'-tri-O-benzoylribose catalyzed by Na2CuP2O7/sodium ascorbate. All obtained compounds were evaluated for their anti-HCV activity in vitro
    corecore