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Hepatocellular Carcinoma in the Woodchuck Model of
Hepatitis B Virus Infection

BUD C. TENNANT,* ILIA A. TOSHKOV,* SIMON F. PEEK,‡ JAMES R. JACOB,* STEPHAN MENNE,*
WILLIAM E. HORNBUCKLE,* RAYMOND D. SCHINAZI,§ BRENT E. KORBA,� PAUL J. COTE,� and
JOHN L. GERIN�

*Gastrointestinal Unit, Department of Clinical Sciences, New York State College of Veterinary Medicine, Cornell University, Ithaca, New York;
‡Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin; §Department of
Veterans Affairs, Emory School of Medicine, Decatur, Georgia; and �Division of Molecular Virology and Immunology, Georgetown University
Medical School, Rockville, Maryland

The Eastern woodchuck (Marmota monax) harbors a
DNA virus (Woodchuck hepatitis virus [WHV]) that is
similar in structure and replicative life cycle to the
human hepatitis B virus (HBV). Like HBV, WHV infects
the liver and can cause acute and chronic hepatitis.
Furthermore, chronic WHV infection in woodchucks
usually leads to development of hepatocellular carci-
noma (HCC) within the first 2–4 years of life. The
woodchuck model has been important in the preclin-
ical evaluation of safety and efficacy of the antiviral
drugs now in use for treatment of HBV infection and
continues to serve as an important, predictive model
for innovative forms of therapy of hepatitis B using
antiviral nucleosides and immune response modifiers
alone or in combination. Almost all woodchucks that
become chronic WHV carriers after experimental neo-
natal inoculation develop HCC with a median HCC-free
survival of 24 months and a median life expectancy
of 30–32 months. The woodchuck model of viral-
induced HCC has been used effectively for the devel-
opment of new imaging agents for enhancement of
detection of hepatic neoplasms by ultrasound and
magnetic resonance imaging. The chemoprevention
of HCC using long-term antiviral nucleoside therapy
has been shown in the woodchuck, and “proof of
principal” has been established for some of the inno-
vative, molecular methods for treatment of HCC. The
model is available for fundamental investigations of
the viral and molecular mechanisms responsible for
hepatocarcinogenesis and should have substantial
value for future development of innovative methods
for chemoprevention and gene therapy of human HCC.

The etiologic role of the hepatitis B virus (HBV) in
hepatocarcinogenesis is well established from ba-

sic, epidemiological, and clinical research studies. The
strongest evidence of the role of this virus is from
results of newborn and infant vaccination that has
resulted in remarkable reductions in the rate of

chronic HBV infection in children and with a con-
comitant reduction in juvenile hepatocellular carci-
noma (HCC). One can be reasonably certain the de-
creased rate of chronic HBV infection will result in a
continued reduction in the incidence of HCC as the
vaccinated population ages.

For those chronically infected with HBV, the progno-
sis remains unfavorable and improved methods of treat-
ment and prevention of HCC are urgently needed. To
make the breakthroughs that are required, preclinical
animal research is essential. In almost all studies of the
role of dietary or other environmental factors in hepato-
carcinogenesis or of the development of strategies for
chemoprevention, chemically induced models of HCC
have been used. The single most important risk factor for
HCC on a worldwide basis is chronic HBV infection and,
of increasing concern, infection with HCV. Although
aflatoxin may have a primary role in some cases of human
HCC or interact with HBV in hepatocarcinogenesis, the
essential primary role of hepatitis viruses is generally
recognized. The objective of this report is to review the
current knowledge of the pathogenesis of experimental
woodchuck hepatitis virus (WHV) infection, to describe
the etiologic role of WHV in hepatocarcinogenesis, and
finally to consider current and potential uses of this
animal model for the discovery and preclinical evaluation
of new strategies for the treatment and prevention of
HCC.

Abbreviations used in this paper: HBV, hepatitis B virus; HCC, hep-
atocellular carcinoma; FAH, foci of altered hepatocytes; GSHV, ground
squirrel hepatitis virus; MRI, magnetic resonance imaging; RE, reticu-
loendothelial; TK, thymidine kinase; WHcAg, woodchuck hepatitis core
antigen; WHsAg, woodchuck hepatitis surface antigen; WHV, wood-
chuck hepatitis virus.
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Naturally Acquired WHV Infection
and HCC

Hepatocellular adenomas were described in wood-
chucks (Marmota monax) from the Philadelphia Zoological
Garden during the early part of the 20th century.1,2 Hep-
atocellular carcinomas subsequently were described in a
woodchuck from the Washington Zoological Park and in
another trapped within the city limits of Bethesda, MD.3

Cases of HCC also were reported in laboratory-maintained
woodchucks trapped originally in New York,4 Maryland,5

and Pennsylvania.6,7

WHV was described by Summers et al.8 in a colony of
woodchucks maintained at the Philadelphia Zoological
Garden and that for some years had experienced high
rates of chronic hepatitis and HCC. It was concluded that
WHV belonged to the HBV family of viruses, and
WHV now is classified as a member of the family Hep-
adnaviridae, genus Orthohepadnavirus, of which human
HBV is the prototype.

The natural habitat of the woodchuck (ground hog)
extends from northern Georgia, Alabama, and Mississippi
in the southern United States; west to Oklahoma, Kansas,
Nebraska, and North and South Dakota; north to Quebec
and Labrador; and across Canada to British Columbia and
the Yukon Territory and includes an area of southeastern
Alaska. A comprehensive, seroepidemiologic study of
WHV infection has not been performed, and the prevalence
of infection throughout most of this range remains un-
known. WHV infection is known to be hyperendemic in
the mid-Atlantic states, and the woodchucks originally
studied by Summers et al.8 were from Pennsylvania. In 1
seroepidemiological study, 23% of the woodchucks from
Pennsylvania, New Jersey, and Maryland tested positive for
WHV surface antigen (WHsAg), and 36% were positive
for antibody (anti-WHs) for an overall infection rate of
59%,9 and similarly high rates of WHV infection in the
mid-Atlantic states have been observed by others.10 In
contrast, the rate of WHV infection in central New York
State was approximately 2%, based on the prevalence of
anti-WHs,10 and we estimate that the rate of persistent
WHs antigenemia in woodchucks from Tompkins County,
New York, is approximately 0.2%. No serologic evidence of
WHV infection has been found in Vermont, Massachusetts,
or in Iowa, although the numbers tested from these areas so
far have been small.11–13

The hepatic neoplasms associated with naturally ac-
quired WHV infection characteristically have been well-
differentiated, trabecular HCCs.14 In most cases, chronic,
active hepatitis was present with abundant mononuclear
cell infiltration of portal tracts that sometimes extended
beyond the limiting plate. There also was scattered pa-

renchymal hepatocellular necrosis, bile duct prolifera-
tion, and in some cases evidence of early fibrosis,14–17 but
hepatic cirrhosis was not characteristic. Progression of
neoplasia from foci of altered hepatocytes (FAH) to small
neoplastic nodules and to frank HCC was recognized and
some HCCs contained significant numbers of infiltrating
hematopoietic cells.16,17 Metastasis of HCC outside the
liver, which occurs in humans and other experimental
animal models with some frequency, has not been re-
ported in woodchucks by most investigators, although
pulmonary metastases have been described.17

Experimental WHV Infection

The original observations on WHV were made
with woodchucks that had been trapped in the native
habitat and then maintained in the laboratory. Wood-
chucks with naturally acquired, chronic WHV infection
were valuable sources of virus and hepatic tissue for
molecular and histologic analyses. Susceptible, wild
woodchucks that had been trapped also were used in
experimental studies of WHV infection. Summers et
al.18 reported results of the experimental infection of 4-
to 8-month-old woodchucks with serum from chronic
WHV carriers. Although productive infection was
shown, infection was self-limited, and none of the ani-
mals became chronic carriers. Other attempts to experi-
mentally infect susceptible juvenile or adult woodchucks
trapped in the native habitat also resulted in acute WHV
infection but in almost all cases were self-limited and did
not result in chronicity.10,19

From the beginning, the limitations of the use of wild
woodchucks for experimental studies were recognized. It
was impossible, for example, to know at what age and for
how long trapped woodchucks had been infected with
WHV or to be certain about nutritional or environmen-
tal factors that could influence the outcome of WHV
infection. Importantly, hepatic lesions caused by Ackertia
mannotae and Capillaria sp. that are common parasites of
wild woodchucks20 complicated the interpretation of
experimental results. To use the woodchuck as an exper-
imental animal model, the National Institute of Allergy
and Infectious Diseases and the National Cancer Institute
jointly supported the establishment of a breeding colony
of woodchucks at Cornell University in 1980. The colony
has served as a source of laboratory born and reared
woodchucks for studies of the pathogenesis WHV infec-
tion, for preclinical antiviral drug development, and for
studies of viral hepatocarcinogenesis.

Woodchucks born in the colony are inoculated at birth
with dilute serum from standardized infectious pools
obtained from chronic, WHV-carrier woodchucks. The
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rate of chronic WHV infection following neonatal inoc-
ulation characteristically is 60% or higher.21,22 Kaplan–
Meier survival analyses have been performed comparing
chronic WHV carriers, woodchucks in which neonatal
WHV infection was resolved (WH viremia cleared and
anti-WHs antibody detected), and uninfected control
woodchucks born and raised under similar laboratory
conditions (Figure 1).23 All WHV carriers at 56 months
of age had either died of HCC or died from intercurrent
diseases but with HCC. In contrast, 42% of the wood-
chucks with resolved WHV infection and 62% of unin-
fected controls were alive after 56 months. HCC devel-
oped in 19% of woodchucks in which experimental
WHV infection was resolved. HCC was not observed in
uninfected, laboratory-reared woodchucks in this study
and is rare in woodchucks that have not been exposed to
WHV.

The gross appearance (Figure 2A) and the rate of HCC
observed in woodchucks with experimentally induced
chronic hepatitis were similar to those reported in wood-
chucks with naturally acquired chronic WHV infection.
The histologic appearance of hepatitis (Figure 2B), of

Figure 1. Kaplan-Meier survival analysis of 50 neonatally infected,
chronic WHV carrier woodchucks and 21 woodchucks similarly in-
fected at birth but in which WHV infection was resolved (clearance of
viremia and development of anti-WHs antibody) compared with 56
uninfected controls. Survival of WHV carriers was significantly de-
creased compared with control woodchucks or woodchucks in which
neonatal WHV infection was resolved. All 51 chronic WHV carriers’
death was attributed to HCC or HCC was present at the time of death
from other intercurrent diseases. HCC was diagnosed in 6 of the 21
woodchucks in which neonatal WHV infection had resolved. HCC was
not found in any of the uninfected control woodchucks. Reprinted with
permission.23

Figure 2. (A) The liver of a chronic WHV carrier woodchuck showing multiple hepatocellular neoplasms (HCC) of varying size protruding from the
diaphragmatic surface. (B) Photomicrograph of the liver of a WHV carrier woodchuck showing chronic portal and parenchymal hepatitis with
mononuclear cell expansion of a portal tract (upper left) and extension of the inflammatory infiltrate beyond the limiting plate. (C) A basophilic
focus of altered hepatocytes (FAH) stained with hematoxylin and eosin (left) and a nearby section stained using a immunohistochemical
procedure for WHcAg (right) . The nonneoplastic hepatocytes are stained intensely in a mosaic pattern for WHcAg, whereas only a few of the cells
of the FAH appear to express WHcAg. (D) Photomicrograph of an undifferentiated HCC showing more malignant characteristics including broad
trabeculae and mitotic figures.
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preneoplastic FAH (Figure 2C), and of HCC (Figure 2D)
also were identical. These results provide direct experi-
mental evidence for the oncogenicity of WHV and, by
analogy, for other hepadnaviruses including HBV, the
California ground squirrel hepatitis virus (GSHV), the
arctic ground squirrel hepatitis virus, and for the less
well-characterized hepadnavirus of Richardson’s ground
squirrels in which naturally acquired infection has been
associated with HCC.23

Histogenesis of Experimental HCC
in Woodchucks

Hepatocarcinogenesis generally is recognized as a
multistage process. In chemically induced rodent mod-
els, development of adenoma and/or HCC is preceded by
the appearance of microscopic FAH that are similar to
those observed in chronic WHV infection.24–26 Dysplas-
tic changes in hepatocytes have been recognized in hu-
mans with chronic HBV infection and in some cases have
been considered to be precancerous in nature. More re-
cently, FAH have been described in the livers of patients
undergoing liver transplantation for chronic, end-stage
viral hepatitis with or without HCC and are essentially
identical to those caused by chemical hepatocarcinogens
in rats and mice and that are characteristic of chronic
WHV infection.27

We have investigated the development of FAH in
woodchucks with experimentally induced chronic
WHV infection. The earliest detection of FAH in
chronic WHV carriers was at 6 months of age. By
9 –10 months, more than 30% of WHV carriers had
such lesions and, thereafter, almost all the livers of
chronic WHV carriers examined contained FAH (Fig-
ure 3). Small HCCs in experimentally induced chronic
WHV infection have been observed as early as 9
months of age. The median time to tumor detection
by ultrasonography in the model was 24 months, and
the median time to death associated with HCC was
29 –30 months of age (Figure 1).23

Molecular Genetic Alterations in
HCC Associated With WHV Infection

Integrated hepadnaviral nucleic acid sequences
have been shown in the cellular DNA of most hepatic
tumors of woodchucks chronically infected with WHV,
and, as in HBV infection, a direct molecular role of
hepadnaviruses in hepatocarcinogenesis has been hypoth-
esized. Integration of hepadnaviral nucleic acid sequences
is believed to be a critical mutagenic event that alters the
expression of cellular regulatory genes (protooncogenes,

tumor suppressor genes) that ultimately results in the
neoplastic transformation of hepatocytes.

Fourel et al.28 have shown that N-myc mRNA was
overexpressed in 60% of woodchuck HCCs examined,
and this transcript was not detectable in normal wood-
chuck liver. Woodchucks were found to have 2 N-myc
loci. One N-myc locus was homologous to other mam-
malian N-myc genes. The other was an intronless gene
with the characteristic structure of a retrotransposon and
was called N-myc2.28 The expression of N-myc2, which
has been mapped to the X chromosome, is highly re-
stricted, and the brain is the only normal woodchuck
tissue in which N-myc2 RNA has been detected.29 The
functional significance of N-myc2 remains unknown, but
current evidence indicates that a distinctive feature of
hepatocarcinogenesis in woodchucks with chronic WHV
infection is viral integration into or near the myc family
of proto-oncogenes.23

In both naturally acquired and experimental WHV
infection, viral integrations seem to be preferentially
associated with the N-myc2 locus and are clustered either
within a 3-kb region upstream of N-myc2 or in the 3=
noncoding region of the gene.30,31 Insertion of WHV
enhancer sequences either upstream or downstream of the
N-myc2 coding domain results in increased production of
either normal N-myc2 RNA or of a hybrid N-myc2/WHV
transcript that is initiated at the normal N-myc2 start
site. Transcriptional activation of myc family proto-onco-
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Figure 3. The percentage of liver sections from woodchucks of differ-
ent ages that contained foci of altered hepatocytes (FAHs). WHV�,
woodchucks were not exposed to WHV and tested negative for sero-
logic markers of WHV infection; WHV�, woodchucks were neonatally
infected with WHV. From 1 to 8 months of age, the woodchucks
studied included woodchucks that were serologically positive for WHV
and would have become chronic carriers and other woodchucks either
serologically positive or negative for WHV and were in the process of
resolving the infection. All woodchucks over 9 months of age were
viremic and considered to be chronic carriers. At 9–10 months of age,
more than 30% of liver specimens contained FAH. Thereafter, almost
all sections contained FAH.
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genes by enhancer insertion seems to be a common
mechanism,32 and a recently identified liver-specific reg-
ulatory element in the WHV genome appears to control
cis activation N-myc2.33 Distant, downstream integration
of WHV DNA on the X chromosome at 2 separate sites
also been associated with N-myc2 activation.34

Buendia and colleagues have reported transgenic mice
carrying the N-myc2 gene under the control of WHV
regulatory sequences. These mice were highly predis-
posed to liver cancer,35 and 70% develop hepatocellular
adenomas or HCC. A transgenic founder mouse carrying
the unmethylated WHV/N-myc2 transgene sequence
died at 2 months of age with a large hepatic tumor,
showing the high oncogenic capacity of the woodchuck
N-myc retroposon. Mutations or deletions of the beta-
catenin gene were present in 25% of the hepatic tumors
of the N-myc2 transgenic mice and were similar to those
reported in HCCs of humans.36 When N-myc2 transgenic
mice were crossed with p53 null mice, the absence of 1
p53 allele markedly accelerated the onset of liver cancer,
providing experimental evidence for synergy between
activation of the N-myc2 gene and decreased expression of
p53 in hepatocarcinogenesis.36

Like the woodchuck, the California ground squirrel
possesses an N-myc2 locus that is transcriptionally active
in the brain.37 Increased N-myc2 expression is unusual in
the HCCs of California ground squirrels infected with
GSHV. Amplification of c-myc expression, however, is
more frequent in ground squirrels than in woodchucks.38

Marion et al.39 have shown that HCC characteristically
develops less frequently in GSHV-infected ground squir-
rels than in WHV carrier woodchucks, and in ground
squirrels, HCC characteristically develops at an older
age.

Seeger et al.40 showed that woodchucks were suscep-
tible to GSHV infection. They successfully infected neo-
natal woodchucks with both WHV and GSHV and
compared the oncogenic potential of the 2 viruses in the
same host species. HCC developed at a significantly
earlier age in WHV carrier woodchucks than in wood-
chucks chronically infected with GSHV. Hepatocellular
carcinomas from these woodchucks have been analyzed
by Hansen et al.41 They confirmed the propensity for
WHV genomic DNA to integrate in or near the N-myc2
locus in HCCs from WHV carriers. Seven of 17 WHV-
induced tumors (41%) had demonstrable rearrangements
of the N-myc2 allele, whereas only 1 of 16 woodchuck
tumors induced by GSHV (6%) had such an N-myc2
rearrangement. Comparable results were obtained when
N-myc2 gene expression was determined. Based on these
observations, it was concluded that the differences in
hepadnavirus insertion and N-myc2 activation between

woodchucks and California ground squirrels were related
primarily to genetic differences in the respective viruses
rather than to differences in the animal host.37,41

Relationship of Size and Histologic
Grade of Hepatic Tumors to WHV
Integration and N-myc
Rearrangement

Jacob et al.42 have investigated the relationship
between the size and histologic grade of hepatic neo-
plasms of woodchucks and the presence of WHV DNA
integrations and N-myc2 rearrangements. The 13 chronic
WHV-carrier woodchucks of their study ranged in age
from 24 to 39 months (median age, 30 months) and had
been born, reared, and maintained in a laboratory envi-
ronment. The clinical diagnosis of HCC was based ini-
tially on increasing serum activity of gammaglutamyl-
transferase and on hepatic ultrasound examinations.
Fifty-five hepatocellular neoplasms and matched nontu-
morous hepatic tissue were obtained postmortem and the
frequency of WHV DNA integrations and of N-myc
rearrangements compared in tumors of different size and
histologic grade (Figure 4).

Four small tumor nodules were classified histologically
as adenomas. Integrated sequences of WHV DNA were

Figure 4. Relationship between histologic grade of tumor (x axis), the
tumor volume (y axis), and the status of WHV DNA integrations and
N-myc rearrangement (z axis) of 55 hepatic tumors. Tumors exhibiting
both WHV integration and N-myc rearrangement were predominately
large, grade 3 HCC. The largest tumors and those that were less
differentiated (grade 2 and 3) characteristically exhibited both WHV
integrations and rearrangement of the N-myc gene. Reprinted with
permission.42
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detected in 2 of the 4, and in 1 of the 2, there was
evidence of N-myc rearrangement. Fifty-one of the neo-
plasms were classified as HCC. Seven were grade 1
HCCs, and WHV DNA integrations were shown in
43%, but none had N-myc rearrangements. In 20 grade
2 HCCs, 80% had WHV DNA integrations, and, in
38%, N-myc rearrangements also were detected. In 24
grade 3 HCCs, integrations of WHV DNA were present
in 79%, and, in 74%, rearrangements were present in
N-myc. In 2 other grade 3 HCCs, rearrangements of
N-myc were detected in the absence of WHV DNA
integrations. The 12 largest tumors in the series all were
grade 2 or 3 HCCs, and, in 83%, both WHV DNA
integrations and N-myc rearrangements were shown.
The molecular changes observed in this study suggest a
progression in genetic alterations that provide a prolif-
erative stimulus and/or growth advantage during hepa-
tocarcinogenesis associated with chronic WHV infection.

Preclinical Evaluation of Efficacy
and Safety of Antiviral Drugs Using
the Woodchuck Model of Hepatitis
B Virus Infection

Woodchucks with experimentally induced
chronic WHV infection have been used successfully in
the preclinical assessment of antiviral drugs during de-
velopment for treatment of chronic HBV infection. Both
nucleoside analogs43,44 and immune-response modifiers
have been evaluated.45,46 Before use in woodchucks,
drugs have been tested for antiviral activity against HBV
in the 2.2.15 cell system.47 Acyclovir and zidovudine
were shown to have no in vitro activity against HBV in
2.2.15 cells and had no antiviral activity against WHV
in the woodchuck model.43 Arabinofuranosyl-adenosine
monophosphate, which had moderate antiviral activity in
vitro, had significant antiviral activity in woodchucks in
vivo at a parenteral dose of 15 mg/kg per day. Most
nucleoside analogs with moderate antiviral activity
against HBV in 2.2.15 cells had comparable antiviral
activity in woodchucks. The 2 exceptions were fialuri-
dine and clevudine, both of which had relatively low in
vitro activity but had potent antiviral activity when
administered orally to woodchucks. In woodchucks, fi-
aluridine had significant, delayed hepatotoxicity associ-
ated with microvesicular steatosis and mitochondrial in-
jury similar to the hepatotoxic effects of fialuridine
observed in humans.48

Lamivudine, which has among the highest selective
indices of in vitro activity in the 2.2.15 cell system43 and
has favorable pharmacokinetics in woodchucks,49 has
variable antiviral activity in the woodchuck model based

on reduction in serum viral load43,44,50,51 and does not
exhibit a significant effect on hepatic covalently closed
circular WHV DNA in cultured woodchuck hepato-
cytes, which may be attributed to the absence of cell
division in hepatocytes in culture.52 Extended lamivu-
dine treatment of woodchucks with chronic WHV in-
fections delayed the development of HCC and signifi-
cantly extended survival in one study.53 In a second
study, however, no effect of lamivudine on hepatocarci-
nogenesis was observed.50 In the second study, treatment
was initiated at an older age, the duration of treatment
was shorter, and the observed effect of treatment on viral
load was less than that observed in the first study. High
rates of mutation in the WHV polymerase gene were
associated with development of high rates of lamivudine
resistance in both studies,54,55 similar to observations in
HBV patients treated long-term with lamivudine.56–58

Lamivudine drug resistance has been induced experi-
mentally in chronic WHV carriers as a model for pre-
clinical evaluation of nucleoside/nucleotide drugs being
developed for treatment of lamivudine-resistant HBV
infection.59 The woodchuck model has been used to
evaluate combination therapy with lamivudine and fam-
ciclovir60 and with lamivudine and alpha-interferon51 to
assess possible additive or synergistic effects. Specific
hepatic targeting of antiviral drugs to increase efficacy
and possibly to diminish nonhepatic toxicity has been
shown using the woodchuck model.61,62 Importantly,
second- and third-generation antiviral nucleosides in-
cluding emtricitabine,63 clevudine,64 entecavir,65,66 and
telbivudine67,68 have been tested for safety and efficacy in
the woodchuck model before the initiation of the ad-
vanced clinical trials that are now in progress.

Chemoprevention of Hepatocellular
Carcinoma in Woodchucks Using
Long-Term Nucleoside Analog
Therapy

In the study reported by Colonno et al.,65 the
guanosine nucleoside, entecavir, which has potent anti-
viral activity against WHV and HBV, was used to
determine the influence of long-term suppression of viral
replication on hepatocarcinogenesis in woodchucks. Be-
ginning at 8 months of age, WHV carriers were given
entecavir orally at a dose of 0.5 mg/kg per day for 8
weeks and then weekly at a dose of 0.5 mg/kg per week.
In 6 woodchucks, treatment was stopped after a total of
14 months, and, in 5, treatment was continued for a total
of 36 months. Hepatic expression of viral antigens and
covalently closed circular WHV DNA were significantly
reduced by long-term entecavir treatment of wood-
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chucks. Three of the 6 woodchucks treated for 14 months
had sustained antiviral responses and developed no evi-
dence of HCC during the next 2 years. In woodchucks
treated for 36 months, there was no evidence of HCC in
4 of the 5 (80% HCC-free survival). Compared with
historical controls in which 4-year HCC survival was
4%, entecavir treatment significantly delayed develop-
ment of HCC and prolonged survival (P � 0.01).

In a second study of long-term antiviral therapy re-
ported by Menne et al.69 1- and 2-year-old woodchucks
were treated for 32 weeks with the highly potent nucle-
oside clevudine (10 mg/kg per day), whereas woodchuck
controls received placebo. Half of clevudine-treated
woodchucks and half of the placebo recipients then re-
ceived 4 doses of alum-adsorbed WHsAg vaccine during
the next 16 weeks. Vaccination alone elicited low-level
antibody responses to WHsAg in most carriers but did
not affect serum WHV DNA, serum WHsAg, or liver
enzyme responses. Carriers treated first with clevudine to
reduce serum WHV DNA and WHsAg and then vacci-
nated developed a more robust anti-WHs response and
normalized liver enzymes. After vaccination, WHsAg-
specific cell-mediated immunity was shown in both vac-
cinated groups but was significantly enhanced in carriers
treated initially with clevudine and was broadened to
include responses to WHV core antigen (WHcAg) and
to selected peptide epitopes of WHcAg and WHsAg. It
was concluded that vaccination with WHsAg after cle-
vudine-disrupted virus-specific humoral and cell-medi-
ated immune tolerance enhanced the immune response
profiles beyond those seen with either clevudine or with
vaccine monotherapy. Therapy with the clevudine-vac-
cine combination resulted in immune response profiles
that resembled those observed during resolution of ex-
perimental WHV infection.

In 10 of the woodchucks reported by Menne et al.,69

clevudine treatment (with or without vaccine) was
initiated at 1 year of age. Marked and sustained re-
ductions in serum WHV DNA and WHs antigenemia
were observed during treatment and for a period of 18
months after drug withdrawal. Liver biopsies were
obtained at the time treatment was initiated, at the
end of treatment (20 months of age), and 6 and 12
months after drug withdrawal (24 and 32 months of
age). At every time point after clevudine treatment
was begun, hepatic WHV nucleic acids and WHcAg
expression were reduced compared with placebo-
treated controls. The percentage of biopsies with FAH
was significantly lower in the clevudine-treated group
than in controls (Figure 5). The development of HCC
also was delayed, and the survival at 3 years of age in
the 10 clevudine-treated woodchucks was 50% com-

pared with 25% in controls (P � 0.065). After 4 years,
the survival in the clevudine group was 25% com-
pared with 6% in controls (P � 0.035).

In a third, long-term study of chemoprevention, 20
8-month-old WHV carriers were treated for life with
lamivudine (5 mg then 15 mg/kg per day), and 20 carrier
controls were treated with placebo.53 Serum WHV DNA
decreased by 4–5 logs in lamivudine-treated wood-
chucks, and the antiviral effect was sustained for more
than 1 year. Thereafter, recrudescence of viral replication
was detected that was associated with mutations of the
WHV polymerase B domain gene.55 There was a signif-
icant delay in the development of HCC in lamivudine-
treated woodchucks and a corresponding increase in sur-
vival. The median time to death in placebo-treated
controls was 32 months and in lamivudine-treated wood-
chucks was 44 months (P � 0.01). A similar beneficial
effect on HCC development was described recently in a
controlled clinical trial in chronic HBV carriers treated
for a median period of 32 months with lamivudine.
During the study, HCC developed in 16 of 215 (7%)
placebo-treated control patients and in 17 of 436 (4%)
patients treated with lamivudine (P � 0.047).70
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Figure 5. The percentage of liver biopsies from 10 chronic WHV
carrier woodchucks treated with clevudine orally (10 mg/kg per day)
beginning at 12 months that contained foci of altered hepatocytes
(FAHs) compared with 10 placebo-treated controls. In the woodchucks
treated with clevudine (with or without vaccine, reported by Menne et
al.69), there were marked and sustained reductions in serum WHV
DNA and WHs antigenemia during treatment and for a period of 18
months after drug withdrawal. Liver biopsies were obtained when
treatment was initiated (12 months of age), at the end of treatment
(20 months of age), and 6 and 12 months after drug withdrawal (24
and 32 months of age). At every time point after clevudine treatment
was initiated, the percentage of biopsies with FAH was significantly
decreased in clevudine-treated woodchucks and the development of
HCC was delayed and 3- and 4-year survival was increased. (See text
for details.)
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Preclinical Assessment of
Diagnostic Imaging Technology
Using the Woodchuck Model of
Hepatitis B Virus Infection

Ultrasonography has been useful in the detection
of HCC during the course of chronic WHV infection in
laboratory-maintained woodchucks.71–73 Woodchucks
with HCC have been useful for preclinical development
of contrast agents for enhancement of both color Doppler
and gray scale ultrasonography including those that use
microbubble technology,74–77 other vascular imaging
agents,78,79 and agents taken up by the reticuloendothe-
lial (RE) system.80 By increasing the sensitivity of tumor
growth measurements or by improving the evaluation of
hepatic tumor regression, these methods may be useful in
future experimental studies of chemoprevention or of
HCC therapy in woodchucks.

Magnetic resonance imaging (MRI) has also been used
successfully for the quantitative evaluation of HCC in
woodchucks. Iron oxide has been administered parenter-
ally to woodchucks with HCC as an MRI contrast
agent.81 The iron was taken up primarily by the RE
system, and the MRI contrast was the result of relatively
more iron being taken up by RE cells of the nonneoplas-
tic hepatic parenchyma than by the hepatic tumors,
which are relatively free of RE activity. An arabinoga-
lactan conjugate of ultrasmall particles of superparamag-
netic iron oxide was used to target the asialoglycoprotein
receptor of the hepatocyte.82 When given intravenously,
MRI contrast was enhanced because the conjugated iron
was taken up by the nonneoplastic hepatocytes that
contain the asialoglycoprotein receptor but not by he-
patic tumor cells which lack the receptor. MR receptor
imaging may have a role in experimental studies to
differentiate between primary liver tumors and mass
lesions of the liver composed of functionally normal
hepatocytes (e.g., regenerating nodules). Hepatic imag-
ing using single photon emission computed tomography
and/or positron immersion tomography may be even
more valuable in understanding the kinetics of molecular
and cellular changes if liver cells from the beginning of
the process of viral hepatocarcinogenesis can be investi-
gated.

Woodchuck Model in the Molecular
Therapy of HCC

There has been significant interest in gene therapy
for HCC and the woodchuck has been a useful animal
model. Bilbao et al.83 have investigated whether an ad-
enoviral cytomegalovirus thymidine kinase (TK) con-
struct could induce an antitumoral effect in woodchucks

with HCC. In a preliminary study, the vector was in-
jected either directly into the hepatic tumor or was
administered by injection directly into the hepatic ar-
tery. A significant number of tumor cells were trans-
duced by both methods even in large tumors. Subsequent
ganciclovir administration caused a significant antitu-
moral effect in 2 woodchucks. A third woodchuck died of
acute liver failure, attributed to TK expression in non-
neoplastic hepatic cells. The later finding indicated the
need to have TK expression under the control of a liver
tumor-specific promoter.

In another gene therapy study reported by Putzer et
al.,84 HCCs of woodchucks were transformed by direct
injection of an adenovirus vector containing the murine
IL-12 and B7.1 genes. Regression of tumors injected
with the therapeutic virus (AdIL-12/B7.1) was compared
postmortem to tumors treated with control virus. In all
tumors treated with AdIL-12/B7.1, significant tumor
regression was observed and this was associated with
increased numbers of CD4(�) and CD8(�) lymphocytes
and interferon gamma. In 1 woodchuck monitored by
MRI, intratumoral vector administration was associated
with almost complete tumor regression within 7 weeks.
It was concluded that adenoviral-based immunotherapy
was effective in the woodchuck model, and development
of this approach for use in human patients with HCC
should be continued.

Summary and Conclusions

Woodchucks have been a valuable experimental
animal for investigation of the pathogenesis of HBV
infection and of the role of HBV in hepatocarcinogenesis.
Woodchucks also have been important in the preclinical
evaluation of the safety and efficacy of antiviral drugs
now in use for treatment of HBV infection and continue
to serve as an important, predictive model for develop-
ment of second- and third-generation antiviral nucleo-
sides/nucleotides and immune response modifiers alone
or in combination. Almost all chronic WHV-carrier
woodchucks develop HCC with a median HCC-free sur-
vival of 24 months and a median life expectancy of
30–32 months. The model has been used effectively for
the development of new imaging agents to enhance the
early detection of hepatic neoplasms by ultrasound and
MRI. The chemoprevention of HCC using long-term
antiviral nucleoside therapy has been shown in the wood-
chuck, and “proof of principal” has been established for
innovative gene therapy of HCC. The laboratory wood-
chuck now is available for fundamental investigations of
the viral pathogenesis of hepatic neoplasia, and, in the
future, should become increasingly important for devel-
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opment of improved methods of chemoprevention and
molecular therapy for human HCC.
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