25 research outputs found

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail

    Targeting novel sites: The N-terminal DNA binding domain of non-LTR retrotransposons is an adaptable module that is implicated in changing site specificities

    No full text
    Restriction-like endonuclease (RLE) bearing non-LTR retrotransposons are site-specific elements that integrate into the genome through target primed reverse transcription (TPRT). RLE-bearing elements have been used as a model system for investigating non-LTR retrotransposon integration. R2 elements target a specific site in the 28S rDNA gene. We previously demonstrated that the two major sub-classes of R2 (R2-A and R2-D) target the R2 insertion site in an opposing manner with regard to the pairing of known DNA binding domains and bound sequences—indicating that the A- and D-clades represent independently derived modes of targeting that site. Elements have been discovered that group phylogenetically with R2 but do not target the canonical R2 site. Here we extend our earlier studies to show that a separate R2-A clade element, which targets a site other than the canonical R2 site, does so by using the N-terminal zinc fingers and Myb motifs. We further extend our targeting studies beyond R2 clade elements by investigating the ability of the N-terminal zinc fingers from the nematode NeSL-1 element to target its integration site. Our data are consistent with the use of an N-terminal DNA binding domain as one of the major targeting determinants used by RLE-bearing non-LTR retrotransposons to secure a protein subunit near the insertion site. This N-terminal DNA binding domain can undergo modifications, allowing the element to target novel sites. The binding orientation of the N-terminal domain relative to the insertion site is quite variable

    Perspective on the “African American participation in Alzheimer disease research: Effective strategies” workshop, 2018

    No full text
    The Washington University School of Medicine Knight Alzheimer Disease Research Center’s “African American Participation in Alzheimer Disease Research: Effective Strategies” Workshop convened to address a major limitation of the ongoing scientific progress regarding Alzheimer disease and related dementias (ADRD): participants in most ADRD research programs overwhelmingly have been limited to non-Hispanic white persons, thus precluding knowledge as to how ADRD may be represented in non-white individuals. Factors that may contribute to successful recruitment and retention of African Americans into ADRD research were discussed and organized into actionable next steps as described within this report
    corecore