17 research outputs found
Cardiac and vascular changes in elderly atherosclerotic mice: the influence of gender
<p>Abstract</p> <p>Background</p> <p>Although advanced age is considered a risk factor for several diseases, the impact of gender on age-associated cardiovascular diseases, such as atherosclerotic processes and valvular diseases, remains not completely clarified. The present study was designed to assess aortic valve morphology and function and vascular damage in elderly using the apolipoprotein E knockout (ApoE KO) mouse. Our hypothesis was that advanced age-related cardiovascular changes are aggravated in atherosclerotic male mice.</p> <p>Methods</p> <p>The grade (0 to 4) of aortic regurgitation was evaluated through angiography. In addition, vascular lipid deposition and senescence were evaluated through histochemical analyses in aged male and female ApoE KO mice, and the results were compared to wild-type C57BL/6J (C57) mice.</p> <p>Results</p> <p>Aortic regurgitation was observed in 92% of the male ApoE KO mice and 100% of the male C57 mice. Comparatively, in age-matched female ApoE KO and C57 mice, aortic regurgitation was observed in a proportion of 58% and 53%, respectively. Histological analysis of the aorta showed an outward (positive) remodeling in ApoE KO mice (female: 1.86 ± 0.15; male: 1.89 ± 0.68) using C57 groups as reference values. Histochemical evaluation of the aorta showed lipid deposition and vascular senescence only in the ApoE KO group, which were more pronounced in male mice.</p> <p>Conclusion</p> <p>The data show that male gender contributes to the progression of aortic regurgitation and that hypercholesterolemia and male gender additively contribute to the occurrence of lipid deposition and vascular senescence in elderly mice.</p
Data standardization of plant-pollinator interactions
Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. Results: Here we present a vocabulary of terms and a data model for sharing plantâpollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plantâpollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plantâpollinator interactions. Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plantâpollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plantâpollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of terms.Fil: Salim, JosĂ© A. Universidade de Sao Paulo; BrasilFil: Saraiva, Antonio M.. Universidade de Sao Paulo; BrasilFil: Zermoglio, Paula Florencia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural. - Universidad Nacional de Rio Negro. Instituto de Investigaciones En Recursos Naturales, Agroecologia y Desarrollo Rural.; ArgentinaFil: Agostini, Kayna. Universidade Federal do SĂŁo Carlos; BrasilFil: Wolowski, Marina. Universidade Federal de Alfenas; BrasilFil: Drucker, Debora P.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Soares, Filipi M.. Universidade de Sao Paulo; BrasilFil: Bergamo, Pedro J.. Jardim BotĂąnico do Rio de Janeiro; BrasilFil: Varassin, Isabela G.. Universidade Federal do ParanĂĄ; BrasilFil: Freitas, Leandro. Jardim BotĂąnico do Rio de Janeiro; BrasilFil: MauĂ©s, MĂĄrcia M.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Rech, Andre R.. Universidade Federal dos Vales do Jequitinhonha e Mucuri; BrasilFil: Veiga, Allan K.. Universidade de Sao Paulo; BrasilFil: Acosta, Andre L.. Instituto TecnolĂłgico Vale; BrasilFil: Araujo, AndrĂ©a C. Universidade Federal do Mato Grosso do Sul; BrasilFil: Nogueira, Anselmo. Universidad Federal do Abc; BrasilFil: Blochtein, Betina. Pontificia Universidade CatĂłlica do Rio Grande do Sul; BrasilFil: Freitas, Breno M.. Universidade Estadual do CearĂĄ; BrasilFil: Albertini, Bruno C.. Universidade de Sao Paulo; BrasilFil: Maia Silva, Camila. Universidade Federal Rural Do Semi Arido; BrasilFil: Nunes, Carlos E. P.. University of Stirling; BrasilFil: Pires, Carmen S. S.. Empresa Brasileira de Pesquisa Agropecuaria (embrapa);Fil: Dos Santos, Charles F.. Pontificia Universidade CatĂłlica do Rio Grande do Sul; BrasilFil: Queiroz, Elisa P.. Universidade de Sao Paulo; BrasilFil: Cartolano, Etienne A.. Universidade de Sao Paulo; BrasilFil: de Oliveira, FavĂzia F. Universidade Federal da Bahia; BrasilFil: Amorim, Felipe W.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: FontĂșrbel, Francisco E.. Pontificia Universidad CatĂłlica de ValparaĂso; ChileFil: da Silva, Gleycon V.. MinistĂ©rio da CiĂȘncia, Tecnologia, InovaçÔes. Instituto Nacional de Pesquisas da AmazĂŽnia; BrasilFil: Consolaro, HĂ©lder. Universidade Federal de CatalĂŁo; Brasi
Data standardization of plantâpollinator interactions
Background: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems
and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now
available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological
data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently
not suitable to fully support interaction data sharing.
Results: Here we present a vocabulary of terms and a data model for sharing plantâpollinator interactions data based on the Darwin
Core standard. The vocabulary introduces 48 new terms targeting several aspects of plantâpollinator interactions and can be used to
capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML,
and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open
access to standardized data on plantâpollinator interactions.
Conclusions: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal
distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plantâpollinator interactions. We
expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plantâpollinator
communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is
flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of termsinfo:eu-repo/semantics/publishedVersio
DNA Damage and Augmented Oxidative Stress in Bone Marrow Mononuclear Cells from Angiotensin-Dependent Hypertensive Mice
It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage