2 research outputs found

    A bulk plasma model for dc and HiPIMS magnetrons

    No full text
    A plasma discharge model has been developed for the bulk plasma (also called the extended presheath) in sputtering magnetrons. It can be used both for high power impulse magnetron sputtering (HiPIMS) and conventional dc sputtering magnetrons. Demonstration calculations are made for the parameters of the HiPIMS sputtering magnetron at Link "oping University, and also benchmarked against results in the literature on dc magnetrons. New insight is obtained regarding the structure and time development of the currents, the electric fields and the potential profiles. The transverse resistivity eta(perpendicular to) has been identified as having fundamental importance both for the potential profiles and for the motion of ionized target material through the bulk plasma. New findings are that in the HiPIMS mode, as a consequence of a high value of eta(perpendicular to), (1) there can be an electric field reversal that in our case extends 0.01-0.04m from the target, (2) the electric field in the bulk plasma is typically an order of magnitude weaker than in dc magnetrons, (3) in the region of electric field reversal the azimuthal current is diamagnetic in nature, i.e. mainly driven by the electron pressure gradient, and actually somewhat reduced by the electron Hall current which here has a reversed direction and (4) the azimuthal current above the racetrack can, through resistive friction, significantly influence the motion of the ionized fraction of the sputtered material and deflect it sideways, away from the target and towards the walls of the magnetron.Original Publication:N Brenning, I Axnas, M A Raadu, Daniel Lundin and Ulf Helmersson, A bulk plasma model for dc and HiPIMS magnetrons, 2008, PLASMA SOURCES SCIENCE and TECHNOLOGY, (17), 4, 045009.http://dx.doi.org/10.1088/0963-0252/17/4/045009Copyright: Iop Publishinghttp://www.iop.org
    corecore