2,030 research outputs found

    Hybrid copula mixed models for combining case-control and cohort studies in meta-analysis of diagnostic tests

    Get PDF
    Copula mixed models for trivariate (or bivariate) meta-analysis of diagnostic test accuracy studies accounting (or not) for disease prevalence have been proposed in the biostatistics literature to synthesize information. However, many systematic reviews often include case-control and cohort studies, so one can either focus on the bivariate meta-analysis of the case-control studies or the trivariate meta-analysis of the cohort studies, as only the latter contains information on disease prevalence. In order to remedy this situation of wasting data we propose a hybrid copula mixed model via a combination of the bivariate and trivariate copula mixed model for the data from the case-control studies and cohort studies, respectively. Hence, this hybrid model can account for study design and also due to its generality can deal with dependence in the joint tails. We apply the proposed hybrid copula mixed model to a review of the performance of contemporary diagnostic imaging modalities for detecting metastases in patients with melanoma

    A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence

    Get PDF
    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality

    Inducible Cre recombinase activity in mouse mature astrocytes and adult neural precursor cells

    Get PDF
    Two transgenic mouse lines expressing an inducible form of the Cre recombinase (CreERTM) under the control of the human GFAP promoter have been generated and characterized. In adult mice, expression of the fusion protein is largely confined to astrocytes in all regions of the central nervous system. Minimal spontaneous Cre activity was detected and recombination was efficiently induced by intraperitoneal administration of tamoxifen in adult mice. The pattern of recombination closely mirrored that of transgene expression. The percentage of astrocytes undergoing recombination varied from region to region ranging from 35% to 70% while a much smaller portion (<1%) of oligodendrocytes and neural precursor cells showed evidence of Cre activity. These mouse lines will provide important tools to dissect gene function in glial cells and in gliomagenesis

    The Natural Variation of a Neural Code

    Get PDF
    The way information is represented by sequences of action potentials of spiking neurons is determined by the input each neuron receives, but also by its biophysics, and the specifics of the circuit in which it is embedded. Even the “code” of identified neurons can vary considerably from individual to individual. Here we compared the neural codes of the identified H1 neuron in the visual systems of two families of flies, blow flies and flesh flies, and explored the effect of the sensory environment that the flies were exposed to during development on the H1 code. We found that the two families differed considerably in the temporal structure of the code, its content and energetic efficiency, as well as the temporal delay of neural response. The differences in the environmental conditions during the flies' development had no significant effect. Our results may thus reflect an instance of a family-specific design of the neural code. They may also suggest that individual variability in information processing by this specific neuron, in terms of both form and content, is regulated genetically

    Enhancement Effects of Martentoxin on Glioma BK Channel and BK Channel (α+β1) Subtypes

    Get PDF
    BACKGROUND: BK channels are usually activated by membrane depolarization and cytoplasmic Ca(2+). Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca(2+)-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca(2+) sensitivity than other known BK channel subtypes. METHODOLOGY AND PRINCIPAL FINDINGS: The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca(2+) imaging. In the presence of cytoplasmic Ca(2+), martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC(50) of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitative change of cytoplasmic Ca(2+) concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca(2+). The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca(2+), the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn't be affected by the toxin. CONCLUSIONS AND SIGNIFICANCE: Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca(2+)-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin

    Leukocyte Telomere Length and All-Cause, Cardiovascular Disease, and Cancer Mortality: Results From Individual-Participant-Data Meta-Analysis of 2 Large Prospective Cohort Studies

    Get PDF
    We studied the associations of leukocyte telomere length (LTL) with all-cause, cardiovascular disease, and cancer mortality in 12,199 adults participating in 2 population-based prospective cohort studies from Europe (ESTHER) and the United States (Nurses’ Health Study). Blood samples were collected in 1989–1990 (Nurses’ Health Study) and 2000–2002 (ESTHER). LTL was measured by quantitative polymerase chain reaction. We calculated z scores for LTL to standardize LTL measurements across the cohorts. Cox proportional hazards regression models were used to calculate relative mortality according to continuous levels and quintiles of LTL z scores. The hazard ratios obtained from each cohort were subsequently pooled by meta-analysis. Overall, 2,882 deaths were recorded during follow-up (Nurses’ Health Study, 1989–2010; ESTHER, 2000–2015). LTL was inversely associated with age in both cohorts. After adjustment for age, a significant inverse trend of LTL with all-cause mortality was observed in both cohorts. In random-effects meta-analysis, age-adjusted hazard ratios for the shortest LTL quintile compared with the longest were 1.23 (95% confidence interval (CI): 1.04, 1.46) for all-cause mortality, 1.29 (95% CI: 0.83, 2.00) for cardiovascular mortality, and 1.10 (95% CI: 0.88, 1.37) for cancer mortality. In this study population with an age range of 43–75 years, we corroborated previous evidence suggesting that LTL predicts all-cause mortality beyond its association with age

    Progression and mortality in patients with CKD attending outpatient nephrology clinics across Europe: A novel analytic approach

    Get PDF
    The incidence of renal replacement therapy (RRT) varies across countries. Yet, little is known about the epidemiology of chronic kidney disease (CKD) outcomes. Our aim was to describe progression and mortality risk in CKD patients not on RRT attending outpatient nephrology clinics across Europe. We used individual data from nine CKD cohorts participating in the European CKD Burden Consortium. A joint model was used to estimate mean eGFR change and mortality risk simultaneously, thereby accounting for mortality risk when estimating eGFR decline and vice versa, while also correcting for the measurement error in eGFR. Results were adjusted for important risk factors (baseline eGFR, age, sex, albuminuria, primary renal disease, diabetes, hypertension, obesity and smoking). 27,771 patients from five countries were included. The adjusted mean annual eGFR decline varied from 0.77 (95%CI 0.45,1.08) ml/min/1.73m2 in the Belgium cohort to 2.43 (95%CI 2.11,2.75) ml/min/1.73m2 in the Spanish cohort. As compared to the Italian PIRP cohort, the adjusted mortality hazard ratio varied from 0.22 (95%CI 0.11,0.43) in the London LACKABO cohort to 1.30 (95%CI 1.13,1.49) in the English CRISIS cohort. Outcomes in CKD patients attending outpatient nephrology clinics varied markedly across European regions. Although eGFR decline showed minor variation, the most variation was observed in CKD mortality. Our results suggest that different healthcare organization systems are potentially associated with differences in outcome of CKD patients within Europe. These results can be used by policy makers to plan resources on a regional, national and European level

    Routes for breaching and protecting genetic privacy

    Full text link
    We are entering the era of ubiquitous genetic information for research, clinical care, and personal curiosity. Sharing these datasets is vital for rapid progress in understanding the genetic basis of human diseases. However, one growing concern is the ability to protect the genetic privacy of the data originators. Here, we technically map threats to genetic privacy and discuss potential mitigation strategies for privacy-preserving dissemination of genetic data.Comment: Draft for comment

    Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting.</p> <p>Objective</p> <p>To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method.</p> <p>Methods</p> <p>We cultured myeloma-positive CD34<sup>+ </sup>PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells to retroviral transduction by targeting the hematopoietic CD34<sup>+ </sup>cell population with a retroviral vector carrying a selectable marker (the truncated form of the human receptor for nerve growth factor, ΔNGFR). We performed therefore a further myeloma purging step by selecting the transduced cells at the end of the culture.</p> <p>Results</p> <p>Overall recovery of CD34<sup>+ </sup>cells after culture was 128.5%; ΔNGFR transduction rate was 28.8% for CD34<sup>+ </sup>cells and 0% for CD138-selected primary myeloma cells, respectively. Recovery of CD34<sup>+ </sup>cells after ΔNGFR selection was 22.3%. By patient-specific Ig-gene rearrangements, we assessed a decrease of 0.7–1.4 logs in tumor load after the CD34<sup>+ </sup>cell selection, and up to 2.3 logs after culture and ΔNGFR selection.</p> <p>Conclusion</p> <p>We conclude that <it>ex-vivo </it>culture and retroviral-mediated transduction of myeloma leukaphereses provide an efficient tumor cell purging.</p

    Fast, automated measurement of nematode swimming (thrashing) without morphometry

    Get PDF
    Background: The "thrashing assay", in which nematodes are placed in liquid and the frequency of lateral swimming ("thrashing") movements estimated, is a well-established method for measuring motility in the genetic model organism Caenorhabditis elegans as well as in parasitic nematodes. It is used as an index of the effects of drugs, chemicals or mutations on motility and has proved useful in identifying mutants affecting behaviour. However, the method is laborious, subject to experimenter error, and therefore does not permit high-throughput applications. Existing automation methods usually involve analysis of worm shape, but this is computationally demanding and error-prone. Here we present a novel, robust and rapid method of automatically counting the thrashing frequency of worms that avoids morphometry but nonetheless gives a direct measure of thrashing frequency. Our method uses principal components analysis to remove the background, followed by computation of a covariance matrix of the remaining image frames from which the interval between statistically-similar frames is estimated. Results: We tested the performance of our covariance method in measuring thrashing rates of worms using mutations that affect motility and found that it accurately substituted for laborious, manual measurements over a wide range of thrashing rates. The algorithm used also enabled us to determine a dose-dependent inhibition of thrashing frequency by the anthelmintic drug, levamisole, illustrating the suitability of the system for assaying the effects of drugs and chemicals on motility. Furthermore, the algorithm successfully measured the actions of levamisole on a parasitic nematode, Haemonchus contortus, which undergoes complex contorted shapes whilst swimming, without alterations in the code or of any parameters, indicating that it is applicable to different nematode species, including parasitic nematodes. Our method is capable of analyzing a 30 s movie in less than 30 s and can therefore be deployed in rapid screens. Conclusion: We demonstrate that a covariance-based method yields a fast, reliable, automated measurement of C. elegans motility which can replace the far more time-consuming, manual method. The absence of a morphometry step means that the method can be applied to any nematode that swims in liquid and, together with its speed, this simplicity lends itself to deployment in large-scale chemical and genetic screens. </p
    corecore