13,358 research outputs found

    Nuclear shadowing and prompt photons at relativistic hadron colliders

    Full text link
    The production of prompt photons at high energies provides a direct probe of the dynamics of the strong interactions. In particular, one expect that it could be used to constrain the behavior of the nuclear gluon distribution in pApA and AAAA collisions. In this letter we investigate the influence of nuclear effects in the production of prompt photons and estimate the transverse momentum dependence of the nuclear ratios RpA=dσ(pA)dyd2pT/Adσ(pp)dyd2pTR_{pA} = {\frac{d\sigma (pA)}{dy d^2 p_T}} / A {\frac{d\sigma (pp)}{dy d^2 p_T}} and RAA=dσ(AA)dyd2pT/A2dσ(pp)dyd2pTR_{AA} = {\frac{d\sigma (AA)}{dy d^2 p_T}} / A^2 {\frac{d\sigma (pp)}{dy d^2 p_T}} at RHIC and LHC energies. We demonstrate that the study of these observables can be useful to determine the magnitude of the shadowing and antishadowing effects in the nuclear gluon distribution.Comment: 4 pages, 3 figures. Version to be published in PR

    Suspended Load Path Tracking Control Using a Tilt-rotor UAV Based on Zonotopic State Estimation

    Full text link
    This work addresses the problem of path tracking control of a suspended load using a tilt-rotor UAV. The main challenge in controlling this kind of system arises from the dynamic behavior imposed by the load, which is usually coupled to the UAV by means of a rope, adding unactuated degrees of freedom to the whole system. Furthermore, to perform the load transportation it is often needed the knowledge of the load position to accomplish the task. Since available sensors are commonly embedded in the mobile platform, information on the load position may not be directly available. To solve this problem in this work, initially, the kinematics of the multi-body mechanical system are formulated from the load's perspective, from which a detailed dynamic model is derived using the Euler-Lagrange approach, yielding a highly coupled, nonlinear state-space representation of the system, affine in the inputs, with the load's position and orientation directly represented by state variables. A zonotopic state estimator is proposed to solve the problem of estimating the load position and orientation, which is formulated based on sensors located at the aircraft, with different sampling times, and unknown-but-bounded measurement noise. To solve the path tracking problem, a discrete-time mixed H2/H∞\mathcal{H}_2/\mathcal{H}_\infty controller with pole-placement constraints is designed with guaranteed time-response properties and robust to unmodeled dynamics, parametric uncertainties, and external disturbances. Results from numerical experiments, performed in a platform based on the Gazebo simulator and on a Computer Aided Design (CAD) model of the system, are presented to corroborate the performance of the zonotopic state estimator along with the designed controller

    Looking at the photoproduction of massive gauge bosons at the LHeC

    Full text link
    In this contribution we report on the investigation of the photoproduction of W and Z bosons in the planned electron-proton/nucleus collider, the LHeC. The production cross sections and the number of events are provided and theoretical uncertainties are discussed. We also analyze the sensitivity of the LHeC experiment to physics beyond Standard Model by studying the role played by anomalous WWgamma coupling in the presented process.Comment: Contribution to the proceedings of the XXI International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS2013), Marseille, 22-26 April 201

    Quarkonium plus prompt-photon associated hadroproduction and nuclear shadowing

    Get PDF
    The quarkonium hadroproduction in association with a photon at high energies provides a probe of the dynamics of the strong interactions as it is dependent on the nuclear gluon distribution. Therefore, it could be used to constrain the behavior of the nuclear gluon distribution in proton-nucleus and nucleus-nucleus collisions. Such processes are useful to single out the magnitude of the shadowing/antishadowing effects in the nuclear parton densities. In this work we investigate the influence of nuclear effects in the production of JPsi + photon and Upsilon + photon and estimate the transverse momentum dependence of the nuclear modification factors. The theoretical framework considered in the JPsi (Upsilon) production associated with a direct photon at the hadron collider is the non-relativistic QCD (NRQCD) factorization formalism.Comment: 8 pages, 4 figures. Final version to be published in European Physical Journal

    Inclusive and exclusive dilepton photoproduction at high energies

    Get PDF
    In this work we investigate the inclusive and exclusive photoproduction of dileptons, which is relevant for the physics programme to be studied in the proposed electron-proton collider, the LHeC. In the inclusive case, the process is sensitive to the parton distribution functions in the photon whereas the exclusive channel is connected to the small-xx QCD dynamics. For the latter, we investigate the role played by saturation physics at a very high energy scenario. The estimates for production cross sections and the number of events are presented.Comment: 5 pages, version to be published in Physical Review

    Nonlinearity in Bacterial Population Dynamics: Proposal for Experiments for the Observation of Abrupt Transitions in Patches

    Full text link
    An explicit proposal for experiments leading to abrupt transitions in spatially extended bacterial populations in a Petri dish is presented on the basis of an exact formula obtained through an analytic theory. The theory provides accurately the transition expressions in spite of the fact that the actual solutions, which involve strong nonlinearity, are inaccessible to it. The analytic expressions are verified through numerical solutions of the relevant nonlinear equation. The experimental set-up suggested uses opaque masks in a Petri dish bathed in ultraviolet radiation as in Lin et al., Biophys. J. {\bf 87}, 75 (2004) and Perry, J. R. Soc. Interface {\bf 2}, 379 (2005) but is based on the interplay of two distances the bacteria must traverse, one of them favorable and the other adverse. As a result of this interplay feature, the experiments proposed introduce highly enhanced reliability in interpretation of observations and in the potential for extraction of system parameters.Comment: 5 figure
    • …
    corecore