16 research outputs found

    Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle

    Get PDF
    Background: Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. Results: Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. Conclusions: The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic flexibility and high genetic microdiversity, revealing properties of a generalist. High genetic flexibility might allow generalist variants of C. jejuni to reversibly express diverse fitness factors in changing environments

    Intestinal Microbiota Composition of Interleukin-10 Deficient C57BL/6J Mice and Susceptibility to Helicobacter hepaticus-Induced Colitis

    Get PDF
    The mouse pathobiont Helicobacter hepaticus can induce typhlocolitis in interleukin-10-deficient mice, and H. hepaticus infection of immunodeficient mice is widely used as a model to study the role of pathogens and commensal bacteria in the pathogenesis of inflammatory bowel disease. C57BL/6J Il10[superscript −/−] mice kept under specific pathogen-free conditions in two different facilities (MHH and MIT), displayed strong differences with respect to their susceptibilities to H. hepaticus-induced intestinal pathology. Mice at MIT developed robust typhlocolitis after infection with H. hepaticus, while mice at MHH developed no significant pathology after infection with the same H. hepaticus strain. We hypothesized that the intestinal microbiota might be responsible for these differences and therefore performed high resolution analysis of the intestinal microbiota composition in uninfected mice from the two facilities by deep sequencing of partial 16S rRNA amplicons. The microbiota composition differed markedly between mice from both facilities. Significant differences were also detected between two groups of MHH mice born in different years. Of the 119 operational taxonomic units (OTUs) that occurred in at least half the cecum or colon samples of at least one mouse group, 24 were only found in MIT mice, and another 13 OTUs could only be found in MHH samples. While most of the MHH-specific OTUs could only be identified to class or family level, the MIT-specific set contained OTUs identified to genus or species level, including the opportunistic pathogen, Bilophila wadsworthia. The susceptibility to H. hepaticus-induced colitis differed considerably between Il10[superscript −/−] mice originating from the two institutions. This was associated with significant differences in microbiota composition, highlighting the importance of characterizing the intestinal microbiome when studying murine models of IBD.National Institutes of Health (U.S.) (Grant NIH P01-CA26731)National Institutes of Health (U.S.) (Grant NIH P30ES0026731)National Institutes of Health (U.S.) (Grant NIH R01-OD011141

    Inhibitory Effect of Enterohepatic Helicobacter hepaticus on Innate Immune Responses of Mouse Intestinal Epithelial Cells▿

    No full text
    Enterohepatic Helicobacter species infect the intestinal tracts and biliary trees of various mammals, including mice and humans, and are associated with chronic inflammatory diseases of the intestine, gallstone formation, and malignant transformation. The recent analysis of the whole genome sequence of the mouse enterohepatic species Helicobacter hepaticus allowed us to perform a functional analysis of bacterial factors that may play a role in these diseases. We tested the hypothesis that H. hepaticus suppresses or evades innate immune responses of mouse intestinal epithelial cells, which allows this pathogen to induce or contribute to chronic inflammatory disease. We demonstrated in the present study that the innate immune responses of intestinal epithelial cells to lipopolysaccharide (LPS) via Toll-like receptor 4 (TLR4) and to flagellin-mediated activation via TLR5 are reduced by H. hepaticus infection through soluble bacterial factors. In particular, H. hepaticus lysate and the soluble component LPS antagonized TLR4- and TLR5-mediated immune responses of intestinal epithelial cells. H. hepaticus lysate and LPS inhibited development of endotoxin tolerance to Escherichia coli LPS. Suppression of innate immune responses by H. hepaticus LPS thus may affect intestinal responses to the resident microbial flora, epithelial homeostasis, and intestinal inflammatory conditions

    Role of energy sensor TlpD of Helicobacter pylori in gerbil colonization and genome analyses after adaptation in the gerbil

    No full text
    Helicobacter pylori maintains colonization in its human host using a limited set of taxis sensors. TlpD is a proposed energy taxis sensor of H. pylori and dominant under environmental conditions of low bacterial energy yield. We studied the impact of H. pylori TlpD on colonization in vivo using a gerbil infection model which closely mimics the gastric physiology of humans. A gerbil-adapted H. pylori strain, HP87 P7, showed energy-dependent behavior, while its isogenic tlpD mutant lost it. A TlpD-complemented strain regained the wild-type phenotype. Infection of gerbils with the complemented strain demonstrated that TlpD is important for persistent infection in the antrum and corpus and suggested a role of TlpD in horizontal navigation and persistent corpus colonization. As a part of the full characterization of the model and to gain insight into the genetic basis of H. pylori adaptation to the gerbil, we determined the complete genome sequences of the gerbil-adapted strain HP87 P7, two HP87 P7 tlpD mutants before and after gerbil passage, and the original human isolate, HP87. The integrity of the genome, including that of a functional cag pathogenicity island, was maintained after gerbil adaptation. Genetic and phenotypic differences between the strains were observed. Major differences between the gerbil-adapted strain and the human isolate emerged, including evidence of recent recombination. Passage of the tlpD mutant through the gerbil selected for gain-of-function variation in a fucosyltransferase gene, futC (HP0093). In conclusion, a gerbil-adapted H. pylori strain with a stable genome has helped to establish that TlpD has important functions for persistent colonization in the stomach

    Closely related <it>Campylobacter jejuni </it>strains from different sources reveal a generalist rather than a specialist lifestyle

    No full text
    Abstract Background Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. Results Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. Conclusions The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic flexibility and high genetic microdiversity, revealing properties of a generalist. High genetic flexibility might allow generalist variants of C. jejuni to reversibly express diverse fitness factors in changing environments.</p

    Distribution of OTUs among samples.

    No full text
    <p>Colors encode absolute OTU counts. Information on OTU classification according to RDP classifier. Numbers 1–8 are mouse identifiers. Within one mouse batch, equal numbers refer to cecum and colon samples of the same animal. Heatmap generated after subsampling to 1227 sequences per sample. The numbers on the color key correspond to untransformed OTU abundances.</p

    Rarefaction curves.

    No full text
    <p>A–E, rarefaction curves for individual samples (n = 8 mice), grouped by sample set. F, rarefaction curves for combined data for each sample set (n = 5 sets), including 95% confidence intervals. Lci, lower bound of confidence interval; hci, higher bound of confidence interval. Each sample set consist of either the cecum or the colon samples for one batch of 8 mice. All curves generated after subsampling to 1227 sequences per sample.</p
    corecore