29 research outputs found

    Thomas John Wydrzynski (8 July 1947-16 March 2018)

    Get PDF
    With this Tribute, we remember and honor Thomas John (Tom) Wydrzynski. Tom was a highly innovative, independent and committed researcher, who had, early in his career, defined his life-long research goal. He was committed to understand how Photosystem II produces molecular oxygen from water, using the energy of sunlight, and to apply this knowledge towards making artificial systems. In this tribute, we summarize his research journey, which involved working on ‘soft money’ in several laboratories around the world for many years, as well as his research achievements. We also reflect upon his approach to life, science and student supervision, as we perceive it. Tom was not only a thoughtful scientist that inspired many to enter this field of research, but also a wonderful supervisor and friend, who is deeply missed (see footnote*)

    Designing photosystem II: molecular engineering of photo-catalytic proteins

    No full text
    Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O2, and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs

    Preparing Rubisco for a tune up

    No full text
    New capabilities for assembling plant Rubisco in bacteria offer a revolution for enhancing photosynthesis. The technology provides a breakthrough to identify and test solutions for improving CO2 fixation by crop Rubisco

    Circular micro-proteins and mechanisms of cyclization

    No full text
    Transpeptidation reactions result in the formation of new peptide bonds and this can occur between two separate peptides or within the one peptide. These reactions are catalyzed by enzymes and when the N- and C-terminus of the one peptide are joined it results in the formation of cyclic proteins. Cyclization via head-to-tail linkage of the termini of a peptide chain occurs in only a small percentage of proteins but gives the resultant cyclic proteins exceptional stability. The mechanisms are not well understood and this review documents what is known of the events that lead to cyclization. Gene encoded cyclic proteins are found in both prokaryotic and eukaryotic species. The prokaryotic circular proteins include the bacteriocins and pilins. The eukaryotic circular proteins in mammals include the θ-defensins and retrocyclins. Small cyclic proteins are also found in fungi and a large range of cyclic proteins are expressed in cyanobacteria. Three types of cyclic proteins have been found in plants, the small cyclic proteins of 5-12 amino acids, the cyclic proteins from sunflower which are made up of 12-14 amino acids, and the larger group known as cyclotides which contain 28-37 amino acids. Three classes of enzymes are able to catalyse transpeptidation reactions, these include the cysteine, serine and threonine proteases. However only cysteine and serine proteases have been documented to cyclize proteins. The cyclotides from Oldenlandia affinis, the plant in which cyclotides were first discovered, are processed by an asparaginyl endopeptidase which is a cysteine protease. These proteases cleave an amide bond and form an acyl enzyme intermediate before nucleophilic attack of the amine group of the N-terminal residue to form a peptide bond, resulting in a cyclic peptide

    The N-Terminal Domain of the Tomato Immune Protein Prf Contains Multiple Homotypic and Pto Kinase Interaction Sites

    Get PDF
    Background: Plant immune proteins display complex conformations. Results: The Prf N-terminal domain forms a homo-dimer, has two binding sites for Pto kinase, and interacts with the Prf leucine-rich repeats domain. Conclusion: The Prf N-terminal domain coordinates multiple domain interactions to control the activity of the immune complex. Significance: Additional resolution is supplied to the Prf-Pto complex

    Engineering model proteins for Photosystem II function

    No full text
    Our knowledge of Photosystem II and the molecular mechanism of oxygen production are rapidly advancing. The time is now ripe to exploit this knowledge and use it as a blueprint for the development of light-driven catalysts, ultimately for the splitting of water into O2 and H2. In this article, we outline the background and our approach to this technological application through the reverse engineering of Photosystem II into model proteins

    Thomas John Wydrzynski (8 July 1947-16 March 2018) : Obituary in Photosynthesis Research, June 2019, Volume 140, Issue 3, pp 253–261

    No full text
    With this Tribute, we remember and honor Thomas John (Tom) Wydrzynski. Tom was a highly innovative, independent and committed researcher, who had, early in his career, defined his life-long research goal. He was committed to understand how Photosystem II produces molecular oxygen from water, using the energy of sunlight, and to apply this knowledge towards making artificial systems. In this tribute, we summarize his research journey, which involved working on soft money' in several laboratories around the world for many years, as well as his research achievements. We also reflect upon his approach to life, science and student supervision, as we perceive it. Tom was not only a thoughtful scientist that inspired many to enter this field of research, but also a wonderful supervisor and friend, who is deeply missed (see footnote*)
    corecore