44 research outputs found

    State v. Medina, 222 A.3d 1246 (R.I. 2020)

    Get PDF

    Relationship between dairy cow genetic merit and profit on commercial spring calving dairy farms

    Get PDF
    peer-reviewedBecause not all animal factors influencing profitability can be included in total merit breeding indices for profitability, the association between animal total merit index and true profitability, taking cognisance of all factors associated with costs and revenues, is generally not known. One method to estimate such associations is at the herd level, associating herd average genetic merit with herd profitability. The objective of this study was to primarily relate herd average genetic merit for a range of traits, including the Irish total merit index, with indicators of performance, including profitability, using correlation and multiple regression analyses. Physical, genetic and financial performance data from 1131 Irish seasonal calving pasture-based dairy farms were available following edits; data on some herds were available for more than 1 year of the 3-year study period (2007 to 2009). Herd average economic breeding index (EBI) was associated with reduced herd average phenotypic milk yield but with greater milk composition, resulting in higher milk prices. Moderate positive correlations (0.26 to 0.61) existed between genetic merit for an individual trait and average herd performance for that trait (e.g. genetic merit for milk yield and average per cow milk yield). Following adjustment for year, stocking rate, herd size and quantity of purchased feed in the multiple regression analysis, average herd EBI was positively and linearly associated with net margin per cow and per litre as well as gross revenue output per cow and per litre. The change in net margin per cow per unit change in the total merit index was h1.94 (s.e.50.42), which was not different from the expectation of h2. This study, based on a large data set of commercial herds with accurate information on profitability and genetic merit, confirms that, after accounting for confounding factors, the change in herd profitability per unit change in herd genetic merit for the total merit index is within expectations

    Factors associated with the financial performance of spring-calving, pasture-based dairy farms

    Get PDF
    peer-reviewedAs land becomes a limiting resource for pasture-based dairy farming, the inclusion of purchased supplementary feeds to increase milk production per cow (through greater dry matter intake) and per hectare (through increased stocking rate) is often proposed as a strategy to increase profitability. Although a plausible proposition, virtually no analysis has been done on the effect of such intensification on the profitability of commercial pasture-based dairy farm businesses. The objective of this study was to characterize the average physical and financial performance of dairy systems differing in the proportion of the cow’s diet coming from grazed pasture versus purchased supplementary feeds over 4 yr, while accounting for any interaction with geographic region. Physical, genetic, and financial performance data from 1,561 seasonal-calving, pasture-based dairy farms in Ireland were available between the years 2008 and 2011; data from some herds were available for more than 1 yr of the 4-yr study period, providing data from 2,759 dairy farm-years. The data set was divided into geographic regions, based on latitude, rainfall, and soil characteristics that relate to drainage; these factors influence the length of the pasture growth season and the timing of turnout to pasture in spring and rehousing in autumn. Farms were also categorized by the quantity of feed purchased; farms in which cows received 30% of their annual feed requirements from purchased feed were considered to be categories representative of increasing levels of system intensification. Geographic region was associated with differences in grazing days, pasture harvested per hectare, milk production per cow and per hectare, and farm profitability. Farms in regions with longer grazing seasons harvested a greater amount of pasture [an additional 19 kg of dry matter (DM)/ha per grazing day per hectare], and greater pasture harvested was associated with increased milk component yield per hectare (58.4 kg of fat and 51.4 kg of protein more per tonne of DM pasture harvested/ha) and net profit per hectare (€268/ha more per tonne of DM harvested). Milk yield and yield of milk components per cow and per hectare increased linearly with increased use of purchased feed (additional 30.6 kg of milk fat and 26.7 kg of milk protein per tonne of DM purchased feed per hectare), but, on average, pasture harvested/hectare and net profit/hectare declined (−0.60 t of DM/ha and −€78.2/ha, respectively) with every tonne of DM supplementary feed purchased per hectare. The results indicate an effect of purchased feeds not usually accounted for in marginal economic analyses (e.g., milk to feed price ratio): the decline in pasture harvested/hectare, with the costs of producing the unutilized pasture in addition to the cost of feed resulting in a lower profit. In conclusion, greater milk component yields per cow were associated with increased profit per hectare, and a greater use of purchased feeds was associated with an increase in the yield of milk components. However, on average, increasing yield of milk components through the supply of purchased feeds to pasture-based cows was associated with a decline in pasture harvested per hectare and profitability. The decline in pasture harvested per hectare with increased use of purchased supplements per cow is probably the primary reason for the low milk production response and the failure to capitalize on the potential benefits of purchased supplements, with the associated costs of growing the unutilized pasture, in conjunction with increased nonfeed variable and fixed costs outweighing the increased milk production and revenue from supplementation. Farmers considering intensification through use of purchased supplements to increase the stock-carrying capacity of the farm (i.e., stocking rate) must ensure that they focus on management of pasture and total cost control to capture the potential benefits of supplementary feed use

    Mobilisation or dilution? Nitrate response of karst springs to high rainfall events

    Get PDF
    peer-reviewedNitrate (NO3−) contamination of groundwater associated with agronomic activity is of major concern in many countries. Where agriculture, thin free draining soils and karst aquifers coincide, groundwater is highly vulnerable to nitrate contamination. As residence times and denitrification potential in such systems are typically low, nitrate can discharge to surface waters unabated. However, such systems also react quickest to agricultural management changes that aim to improve water quality. In response to storm events, nitrate concentrations can alter significantly, i.e. rapidly decreasing or increasing concentrations. The current study examines the response of a specific karst spring situated on a grassland farm in South Ireland to rainfall events utilising high-resolution nitrate and discharge data together with on-farm borehole groundwater fluctuation data. Specifically, the objectives of the study are to formulate a scientific hypothesis of possible scenarios relating to nitrate responses during storm events, and to verify this hypothesis using additional case studies from the literature. This elucidates the controlling key factors that lead to mobilisation and/or dilution of nitrate concentrations during storm events. These were land use, hydrological condition and karstification, which in combination can lead to differential responses of mobilised and/or diluted nitrate concentrations. Furthermore, the results indicate that nitrate response in karst is strongly dependent on nutrient source, whether mobilisation and/or dilution occur and on the pathway taken. This will have consequences for the delivery of nitrate to a surface water receptor. The current study improves our understanding of nitrate responses in karst systems and therefore can guide environmental modellers, policy makers and drinking water managers with respect to the regulations of the European Union (EU) Water Framework Directive (WFD). In future, more research should focus on the high-resolution monitoring of karst aquifers to capture the high variability of hydrochemical processes, which occur at time intervals of hours to days.Teagasc Walsh Fellowship Programm

    Multi-year evaluation of stocking rate and animal genotype on milk production per hectare within intensive pasture-based production systems

    Get PDF
    peer-reviewedThe objective of this experiment was to evaluate the effect of stocking rate (SR) and animal genotype (BR) on milk production, body weight (BW), and body condition score (BCS) within intensive pasture-based systems. A total of 533 lactation records, from 246 elite genetic merit dairy cows were available for analysis; 68 Holstein-Friesian (HF) and 71 Jersey × Holstein-Friesian (JxHF) crossbred cows in each of 4 consecutive years (2013–2016, inclusive). Cows from each BR were randomly allocated to 1 of 3 whole-farm comparative SR treatments, low (LSR; 1,200 kg of BW/ha), medium (MSR; 1,400 kg of BW/ha), and high (HSR; 1,600 kg of BW/ha), and remained in the same SR treatments for the duration of the experiment. The effects of SR, BR, and their interaction on milk production/cow and per hectare, BW, BCS, and grazing characteristics were analyzed. Total pasture utilization per hectare consumed in the form of grazed pasture increased linearly as SR increased: least in LSR (10,237 kg of dry matter/ha), intermediate in MSR (11,016 kg of dry matter/ha), and greatest in HSR (11,809 kg of dry matter/ha). Milk and milk solids (MS) yield per hectare was greatest for HSR (15,942 and 1,354 kg, respectively), intermediate for MSR (14,191 and 1,220 kg, respectively), and least for LSR (13,186 and 1,139 kg, respectively) with similar trends evident for fat, protein, and lactose yield/ha. At higher SR (MSR and HSR), MS yield per kg of BW per ha was reduced (0.85 and 0.82 kg of MS/kg of BW, respectively) compared with LSR (0.93 kg of MS/kg of BW/ha). Holstein-Friesian cows achieved fewer grazing days per hectare (−37 d), and produced more milk (+561 kg/ha) but less fat plus protein (−57 kg/ha) compared with JxHF cows; the JxHF cows were lighter. At similar BW per hectare, JxHF cows produced more fat plus protein/ha during the grazing season at low (1,164 vs. 1,113 kg), medium (1,254 vs. 1,185 kg), and high (1,327 vs. 1,380 kg) SR. In addition, JxHF cows produced more fat plus protein per kg of BW/ha (0.90 kg) compared with HF cows (0.84 kg). The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based production systems

    The effect of Holstein-Friesian genotype and feeding system on selected performance parameters of dairy cows on grass-based systems of milk production in Ireland

    Get PDF
    End of project reportThe overall objective of this project was to assess, the effect of strain of Holstein-Friesian dairy cow, pasture-based feed system (FS) and their interaction on animal performance in terms of milk productivity and lactation profile, body weight (BW), body condition score (BCS), feed intake and energy balance (EB), reproductive performance and overall economic profitability

    The Effect of Various Pasture-based Systems of Milk Production on Animal Performance in the Northeast Region of Ireland

    Get PDF
    End of Project ReportThe potential of Irish soils to grow grass throughout the year and success in utilizing grass are key factors affecting output and profitability of dairy production systems (Shalloo et al., 2004). In the Northeast region of Ireland, the potential grazing season is shortened due to impeded land drainage, topography, high rainfall and northerly aspect. The main focus of the Ballyhaise research programme is to develop more sustainable production systems suitable to the limitations of the region with a specific focus on grass growth and utilization. Progress in these technologies will improve the competitiveness of dairying in the Northeast region. We are also now faced with a new economic environment with market forecasts predicting a steady decline in dairy product prices for Irish dairy farmers while input prices continue to increase. It has been shown from previous studies that dairy farmers need to expand and/or increase the efficiency of their dairy operation to maintain their real farm incomes over the coming years (Breen and Hennessey, 2003). It is likely that land purchase price will continue to be high in future years. Firstly, dairy farmers can continue at their current level of production and efficiency, and suffer a decline in farm profit as milk price falls. It is likely that greater amounts of milk quota will become available in the coming years; therefore many dairy farmers will have the option to increase production. Expansion opportunities will be limited by the key constraints such as labour supply and cost, capital cost, milk quota availability and price and availability of land around the milking parlour. Labour efficient work practices will have to be adopted on farms to allow one operator to manage a greater number of cows. The objective of this experiment was to examine the effect of two divergent pasture-based systems of milk production on animal performance over a two-year period and to subsequently describe the optimum system for dairy farmers in the Northeast region both now and into the future

    Milk production of Holstein-Friesian cows of divergent Economic Breeding Index evaluated under seasonal pasture-based management

    Get PDF
    peer-reviewedThe objective of this study was to validate the effect of genetic improvement using the Irish genetic merit index, the Economic Breeding Index (EBI), on total lactation performance and lactation profiles for milk yield, milk solids yield (fat plus protein; kg), and milk fat, protein, and lactose content within 3 pasture-based feeding treatments (FT) and to investigate whether an interaction exists between genetic group (GG) of Holstein-Friesian and pasture-based FT. The 2 GG were (1) extremely high EBI representative of the top 5% nationally (referred to as the elite group) and (2) representative of the national average EBI (referred to as the NA group). Cows from each GG were randomly allocated each year to 1 of 3 pasture-based FT: control, lower grass allowance, and high concentrate. The effects of GG, FT, year, parity, and the interaction between GG and FT adjusted for calving day of year on milk and milk solids (fat plus protein; kg) production across lactation were studied using mixed models. Cow was nested within GG to account for repeated cow records across years. The overall and stage of lactation-specific responses to concentrate supplementation (high concentrate vs. control) and reduced pasture allowance (lower grass allowance vs. control) were tested. Profiles of daily milk yield, milk solids yield, and milk fat, protein, and lactose content for each week of lactation for the elite and NA groups within each FT and for each parity group within the elite and NA groups were generated. Phenotypic performance was regressed against individual cow genetic potential based on predicted transmitting ability. The NA cows produced the highest milk yield. Milk fat and protein content was higher for the elite group and consequently yield of solids-corrected milk was similar, whereas yield of milk solids tended to be higher for the elite group compared with the NA group. Milk lactose content did not differ between GG. Responses to concentrate supplementation or reduced pasture allowance did not differ between GG. Milk production profiles illustrated that elite cows maintained higher production but with lower persistency than NA cows. Regression of phenotypic performance against predicted transmitting ability illustrated that performance was broadly in line with expectation. The results illustrate that the superiority of high-EBI cattle is consistent across diverse pasture-based FT. The results also highlight the success of the EBI to deliver production performance in line with the national breeding objective: lower milk volume with higher fat and protein content

    Effect of stocking rate and animal genotype on dry matter intake, milk production, body weight, and body condition score in spring-calving, grass-fed dairy cows

    Get PDF
    peer-reviewedThe objective of the experiment was to quantify the effect of stocking rate (SR) and animal genotype on milk production, dry matter intake (DMI), energy balance, and production efficiency across 2 consecutive grazing seasons (2014 and 2015). A total of 753 records from 177 dairy cows were available for analysis: 68 Holstein-Friesian and 71 Jersey × Holstein-Friesian (JxHF) cows each year of the experiment under a pasture-based seasonal production system. Animals within each breed group were randomly allocated to 1 of 3 whole-farm SR treatments defined in terms of body weight per hectare (kg of body weight/ha): low (1,200 kg of body weight/ha), medium (1,400 kg of body weight/ha), and high (1,600 kg of body weight/ha), and animals remained in the same SR treatments for the duration of the experiment. Individual animal DMI was estimated 3 times per year at grass using the n-alkane technique: March (spring), June (summer), and September (autumn), corresponding to 45, 111, and 209 d in milk, respectively. The effects of SR, animal genotype, season, and their interactions were analyzed using mixed models. Milk production, body weight, and production efficiency per cow decreased significantly as SR increased due to reduced herbage availability per cow and increased grazing severity. As a percentage of body weight, JxHF cows had higher feed conversion efficiency, higher DMI and milk solids (i.e., kg of fat + kg of protein) production, and also required less energy intake to produce 1 kg of milk solids. The increased production efficiency of JxHF cows at a similar body weight per hectare in the current analysis suggests that factors other than individual cow body weight contribute to the improved efficiency within intensive grazing systems. The results highlight the superior productive efficiency of high genetic potential crossbred dairy cows within intensive pasture-based milk production systems at higher SR where feed availability is restricted
    corecore