14 research outputs found

    Functional characterisation of a mouse Imprinted Gene Network

    No full text
    Chez les mammifĂšres, l'empreinte gĂ©nomique parentale est un mĂ©canisme Ă©pigĂ©nĂ©tique restreignant l'expression d'une centaine de gĂšnes Ă  un seul allĂšle, dĂ©terminĂ© selon son origine parentale. Les gĂšnes affectĂ©s et les mĂ©canismes sous-jacents Ă  leur expression mono-allĂ©lique sont essentiellement dĂ©terminĂ©s par une marque Ă©pigĂ©nĂ©tique diffĂ©rentielle portĂ©s par les allĂšles maternel et paternel. D'un point de vue fonctionnel et au niveau physiologique, l'empreinte est actuellement comprise comme un mĂ©canisme contrĂŽlant la quantitĂ© de ressources attribuĂ©es par la mĂšre Ă  sa progĂ©niture. Les gĂšnes soumis Ă  empreinte s'inscrivent dans un mĂȘme rĂ©seau transcriptionnel (IGN), et plusieurs Ă©tudes indiquent qu'ils contrĂŽleraient l'Ă©quilibre entre prolifĂ©ration et quiescence de cellules souches adultes. A travers cette Ă©tude, nous montrons une induction coordonnĂ©e de la plupart des gĂšnes soumis Ă  empreinte lors de la sortie du cycle cellulaire, que celle-ci soit rĂ©versible (quiescence) ou non (diffĂ©renciation). De plus, dans un modĂšle de prĂ©-adipocytes 3T3-L1, la perturbation de la dynamique d'expression de plusieurs de ces gĂšnes semble conforter l'hypothĂšse d'un contrĂŽle des transitions entre diffĂ©rents Ă©tats cellulaires (prolifĂ©ration, quiescence et diffĂ©renciation) par l'IGN. Outre l'identification d'une fonction cellulaire commune aux gĂšnes soumis Ă  empreinte, nos rĂ©sultats ouvrent la voie d'une meilleure comprĂ©hension des mĂ©canismes de rĂ©gulation de la quiescence. De plus, nos conclusions permettent de suggĂ©rer un nouveau scĂ©nario pour la sĂ©lection de l'empreinte parentale au cours de l'Ă©volution des mammifĂšres.Mammalian genomic imprinting is an epigenetic mechanism that restrains the expression of about a hundred genes to a single allele, in a parent-of-origin specific manner. The identity of imprinted genes and the molecular basis of their monoallelic expression mostly rely on a differential epigenetic marking of the parental alleles. Presently, imprinting is understood as a mechanism aimed at controlling the amount of maternal resources allocated to the offspring. Imprinted genes belong to the same transcriptional network (IGN) and, according to different reports, they seem to control the balance between proliferation and quiescence of adult stem cells. In this study, we show that most imprinted genes are induced upon cell cycle exit, whether reversible (quiescence) or not (differentiation). In addition, within the 3T3-L1 preadipocytes cell line, impairing the dynamics of expression of several imprinted genes impairs the transitions between different cellular states, namely proliferation, quiescence and differentiation. Our results highlight the existence of a common cellular function of imprinted genes, and provide a new frame to understand cellular quiescence, at a molecular level. Furthermore, they suggest a new plausible scenario for the implementation of genomic imprinting during mammalian evolution

    A destabilised metabolic niche provokes loss of a subpopulation of aged muscle stem cells

    No full text
    International audienceAgeing is a multi-factorial condition that results in a gradual decline in tissue and organ function. Systemic, local and intrinsic factors play major roles in this process that also results in a decline in stem cell number and function. In this issue of The EMBO Journal, Li et al (2019) show that a subpopulation of mouse muscle stem cells is depleted in aged mice through loss of niche-derived granulocyte colony-stimulating factor (G-CSF)

    Skeletal muscle stem cells in comfort and stress

    No full text
    Abstract Investigations on developmental and regenerative myogenesis have led to major advances in decrypting stem cell properties and potential, as well as their interactions within the evolving niche. As a consequence, regenerative myogenesis has provided a forum to investigate intrinsic regulators of stem cell properties as well as extrinsic factors, including stromal cells, during normal growth and following injury and disease. Here we review some of the latest advances in the field that have exposed fundamental processes including regulation of stress following trauma and ageing, senescence, DNA damage control and modes of symmetric and asymmetric cell divisions. Recent studies have begun to explore the nature of the niche that is distinct in different muscle groups, and that is altered from prenatal to postnatal stages, and during ageing. We also discuss heterogeneities among muscle stem cells and how distinct properties within the quiescent and proliferating cell states might impact on homoeostasis and regeneration. Interestingly, cellular quiescence, which was thought to be a passive cell state, is regulated by multiple mechanisms, many of which are deregulated in various contexts including ageing. These and other factors including metabolic activity and genetic background can impact on the efficiency of muscle regeneration

    Sorting DNA with asymmetry: a new player in gene regulation?

    No full text
    International audienceIn recent years, our views on how DNA and genes are organised and regulated have evolved significantly. One example is provided by reports that single DNA strands in the double helix could carry distinct forms of information. That chromatids carrying old and nascently replicated DNA strands are recognised by the mitotic machinery, then segregated in a concerted way to distinct daughter cells after cell division is remarkable. Notably, this phenomenon in several cases has been associated with the cell fate choice of resulting daughter cells. Here, we review the evidence for asymmetric or template DNA strand segregation in mammals with a focus on skeletal muscle

    Identification et caractérisation de la fonction d'un réseau de gÚnes soumis à empreinte

    No full text
    Chez les mammifĂšres, l'empreinte gĂ©nomique parentale est un mĂ©canisme Ă©pigĂ©nĂ©tique restreignant l'expression d'une centaine de gĂšnes Ă  un seul allĂšle, dĂ©terminĂ© selon son origine parentale. Les gĂšnes affectĂ©s et les mĂ©canismes sous-jacents Ă  leur expression mono-allĂ©lique sont essentiellement dĂ©terminĂ©s par une marque Ă©pigĂ©nĂ©tique diffĂ©rentielle portĂ©s par les allĂšles maternel et paternel. D'un point de vue fonctionnel et au niveau physiologique, l'empreinte est actuellement comprise comme un mĂ©canisme contrĂŽlant la quantitĂ© de ressources attribuĂ©es par la mĂšre Ă  sa progĂ©niture. Les gĂšnes soumis Ă  empreinte s'inscrivent dans un mĂȘme rĂ©seau transcriptionnel (IGN), et plusieurs Ă©tudes indiquent qu'ils contrĂŽleraient l'Ă©quilibre entre prolifĂ©ration et quiescence de cellules souches adultes. A travers cette Ă©tude, nous montrons une induction coordonnĂ©e de la plupart des gĂšnes soumis Ă  empreinte lors de la sortie du cycle cellulaire, que celle-ci soit rĂ©versible (quiescence) ou non (diffĂ©renciation). De plus, dans un modĂšle de prĂ©-adipocytes 3T3-L1, la perturbation de la dynamique d'expression de plusieurs de ces gĂšnes semble conforter l'hypothĂšse d'un contrĂŽle des transitions entre diffĂ©rents Ă©tats cellulaires (prolifĂ©ration, quiescence et diffĂ©renciation) par l'IGN. Outre l'identification d'une fonction cellulaire commune aux gĂšnes soumis Ă  empreinte, nos rĂ©sultats ouvrent la voie d'une meilleure comprĂ©hension des mĂ©canismes de rĂ©gulation de la quiescence. De plus, nos conclusions permettent de suggĂ©rer un nouveau scĂ©nario pour la sĂ©lection de l'empreinte parentale au cours de l'Ă©volution des mammifĂšres.Mammalian genomic imprinting is an epigenetic mechanism that restrains the expression of about a hundred genes to a single allele, in a parent-of-origin specific manner. The identity of imprinted genes and the molecular basis of their monoallelic expression mostly rely on a differential epigenetic marking of the parental alleles. Presently, imprinting is understood as a mechanism aimed at controlling the amount of maternal resources allocated to the offspring. Imprinted genes belong to the same transcriptional network (IGN) and, according to different reports, they seem to control the balance between proliferation and quiescence of adult stem cells. In this study, we show that most imprinted genes are induced upon cell cycle exit, whether reversible (quiescence) or not (differentiation). In addition, within the 3T3-L1 preadipocytes cell line, impairing the dynamics of expression of several imprinted genes impairs the transitions between different cellular states, namely proliferation, quiescence and differentiation. Our results highlight the existence of a common cellular function of imprinted genes, and provide a new frame to understand cellular quiescence, at a molecular level. Furthermore, they suggest a new plausible scenario for the implementation of genomic imprinting during mammalian evolution.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Les destins cellulaires différentiels des cellules souches musculaires sont accompagnés d'une ségrégation symétrique des histones H3 canoniques in vivo

    No full text
    Posté le 18 décembre 2018 sur BioRxivStem cells are maintained through symmetric or asymmetric cell divisions. While various mechanisms initiate asymmetric cell fates during mitosis, possible epigenetic control of this process has emerged recently. The asymmetrical distribution of a canonical histone H3 variant during mitosis in fly germline has suggested a role for partitioning old and new nucleosomes in asymmetric cell fates. Here, we provide resources for single cell assays and show the asymmetric segregation of transcription factors along with old and new DNA in mouse muscle stem cells ex vivo and in vivo . However, these differential fate outcomes contrast with a symmetric distribution of the canonical H3.1 vertebrate variant. These findings point to different evolutionary mechanisms operating in fly germline stem cells and vertebrate somatic stem cells to mitigate epigenetic regulation of asymmetric cell fates.Les cellules souches sont maintenues par des divisions cellulaires symétriques ou asymétriques. Alors que divers mécanismes déclenchent des destins cellulaires asymétriques pendant la mitose, un éventuel contrÎle épigénétique de ce processus est apparu récemment. La distribution asymétrique d'une variante canonique de l'histone H3 pendant la mitose dans la lignée germinale de la mouche a suggéré un rÎle pour la partition des anciens et des nouveaux nucléosomes dans les destins cellulaires asymétriques. Ici, nous fournissons des ressources pour les essais sur cellules individuelles et montrons la ségrégation asymétrique des facteurs de transcription avec l'ancien et le nouvel ADN dans les cellules souches musculaires de souris ex vivo et in vivo . Cependant, ces résultats de destins différentiels contrastent avec une distribution symétrique de la variante canonique des vertébrés H3.1. Ces résultats indiquent que différents mécanismes d'évolution opÚrent dans les cellules souches germinales de mouches et les cellules souches somatiques de vertébrés pour atténuer la régulation épigénétique des destins cellulaires asymétriques

    Dynamique des divisions asymétriques et symétriques des cellules souches musculaires in vivo et sur des niches artificielles

    No full text
    International audienceStem cells can be maintained through symmetric cell divisions (SCDs) and asymmetric cell divisions (ACDs). How and when these divisions occur in vivo in vertebrates is poorly understood. Here, we developed a clonogenic cell tracing method that demonstrates the asymmetric distribution of transcription factors along with old and new DNA in mouse muscle stem cells during skeletal muscle regeneration. Combining single-cell tracking and artificial niches ex vivo, we show how cells switch from ACDs to SCDs, suggesting that they are not engaged in an obligate mode of cell division. Further, we generated SNAP-tagged histone H3-reporter mice and find that, unlike fly germline stem cells, differential fate outcomes are associated with a symmetric distribution of the H3.1 and H3.3 histone variants in mouse muscle stem cells. This versatile and efficient H3-SNAP labeling system will allow an investigation of mechanisms underlying the maintenance of epigenomic identity and plasticity in a variety of tissues.Les cellules souches peuvent ĂȘtre maintenues par des divisions cellulaires symĂ©triques (DCS) et des divisions cellulaires asymĂ©triques (DCA). On comprend mal comment et quand ces divisions se produisent in vivo chez les vertĂ©brĂ©s. Ici, nous avons dĂ©veloppĂ© une mĂ©thode de traçage cellulaire clonogĂšne qui dĂ©montre la distribution asymĂ©trique des facteurs de transcription ainsi que de l'ADN ancien et nouveau dans les cellules souches de muscles de souris pendant la rĂ©gĂ©nĂ©ration des muscles squelettiques. En combinant le traçage d'une seule cellule et des niches artificielles ex vivo, nous montrons comment les cellules passent des ACD aux SCD, ce qui suggĂšre qu'elles ne sont pas engagĂ©es dans un mode de division cellulaire obligatoire. En outre, nous avons gĂ©nĂ©rĂ© des souris indicatrices d'histone H3 marquĂ©es par SNAP et nous avons dĂ©couvert que, contrairement aux cellules souches germinales de mouches, les rĂ©sultats diffĂ©rentiels du destin sont associĂ©s Ă  une distribution symĂ©trique des variantes d'histone H3.1 et H3.3 dans les cellules souches musculaires de souris. Ce systĂšme de marquage H3-SNAP polyvalent et efficace permettra d'Ă©tudier les mĂ©canismes sous-jacents au maintien de l'identitĂ© et de la plasticitĂ© Ă©pigĂ©nomiques dans une variĂ©tĂ© de tissus

    Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence

    No full text
    International audienceCritical features of stem cells include anchoring within a niche and activation upon injury. Notch signaling maintains skeletal muscle satellite (stem) cell quiescence by inhibiting differentiation and inducing expression of extracellular components of the niche. However, the complete spectrum of how Notch safeguards quiescence is not well understood. Here, we perform Notch ChIP-sequencing and small RNA sequencing in satellite cells and identify the Notch-induced microRNA-708, which is a mirtron that is highly expressed in quiescent cells and sharply downregulated in activated cells. We employ in vivo and ex vivo functional studies, in addition to live imaging, to show that miR-708 regulates quiescence and self-renewal by antagonizing cell migration through targeting the transcripts of the focal-adhesion-associated protein Tensin3. Therefore, this study identifies a Notch-miR708-Tensin3 axis and suggests that Notch signaling can regulate satellite cell quiescence and transition to the activation state through dynamic regulation of the migratory machinery

    Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation.

    No full text
    Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined. Here we show that EOM and limb MuSCs have distinct DNA methylation signatures associated with enhancers of location-specific genes, and that the EOM transcriptome is reprogrammed following transplantation into a limb muscle environment. Notably, EOM MuSCs expressed host-site specific positional Hox codes after engraftment and self-renewal within the host muscle. However, about 10% of EOM-specific genes showed engraftment-resistant expression, pointing to cell-intrinsic molecular determinants of the higher engraftment potential of EOM MuSCs. Our results underscore the molecular diversity of distinct MuSC populations and molecularly define their plasticity in response to microenvironmental cues. These findings provide insights into strategies designed to improve the functional capacity of MuSCs in the context of regenerative medicine
    corecore