145 research outputs found

    Thermography and thermoregulation of the face

    Get PDF
    BACKGROUND: Although clinical diagnosis of thermoregulation is gaining in importance there is no consistent evidence on the value of thermography of the facial region. In particular there are no reference values established with standardised methods. METHODS: Skin temperatures were measured in the facial area at 32 fixed measuring sites in 26 health subjects (7–72 years) with the aid of a contact thermograph (Eidatherm). A total of 6 measurements were performed separately for the two sides of the face at intervals of equal lengths (4 hours) over a period of 24 hours. Thermoregulation was triggered by application of a cold stimulus in the region of the ipsilateral ear lobe. RESULTS: Comparison of the sides revealed significant asymmetry of face temperature. The left side of the face showed a temperature that was on the average 0.1°C lower than on the right. No increase in temperature was found following application of the cold stimulus. However, a significant circadian rhythm with mean temperature differences of 0.7°C was observed. CONCLUSION: The results obtained should be seen as an initial basis for compiling an exact thermoprofile of the surface temperature of the facial region that takes into account the circadian rhythm, thus closing gaps in studies on physiological changes in the temperature of the skin of the face

    Human metapneumovirus infection after allogeneic hematopoietic stem cell transplantation

    Get PDF
    Background: The clinical characteristics of human metapneumovirus (hMPV)-associated lower respiratory tract infection (LRTI) after allogeneic hematopoietic stem cell transplantation (HSCT) is not well described. We describe the clinical course in eight HSCT recipients suffering from hMPV infection. Methods: We prospectively included all patients with hMPV-associated LRTI after allogeneic HSCT during a period of 1year. hMPV was diagnosed by multiplex polymerase chain reaction (PCR) from bronchoalveolar lavage (BAL). Results: Eight patients with hMPV-associated LRTI were identified from 93 BAL samples. Three of the eight patients had co-infections with other pathogens. The median age of the patients was 45years [interquartile range (IQR) 36.8-53.5], the median time posttransplant was 473days (IQR 251-1,165), 5/8 patients had chronic graft-versus-host disease (cGvHD), and 6/8 patients received immunosuppression. Chest computed tomography (CT) scanning showed a ground-glass pattern in 7/8 patients. Seven of eight patients required hospitalization due to severe symptoms and hypoxemia. All were treated with intravenous immunoglobulin (IVIG), which was combined with oral ribavirin in six patients. The mortality rate was 12.5% (1/8). Conclusions: hMPV-associated LRTI in allogeneic HSCT recipients are not uncommon and present with unspecific respiratory symptoms, ground-glass pattern in CT scanning, and co-infectio

    In-vivo assessment of normal T1 values of the right-ventricular myocardium by cardiac MRI

    Get PDF
    To test feasibility of myocardial T1 mapping of the right ventricle (RV) at systole when myocardium is more compact and to determine the most appropriate imaging plane. 20 healthy volunteers (11 men; 33±8years) were imaged on a 1.5T scanner (MAGNETOM Avanto, Siemens AG, Erlangen, Germany). A modified look-locker inversion-recovery sequence was acquired at mid-ventricular short axis (SAX), as horizontal long-axis view and as transversal view at systole (mean trigger time 363±37ms). Myocardial T1 time of the left-ventricular and RV myocardium was measured within a region of interest (ROI) on generated T1-maps. The most appropriate imaging plane for the RV was determined by the ability to draw a ROI including the largest amount of myocardium without including adjacent tissue or blood. At systole, when myocardium is thicker, measurements of the RV myocardium were feasible in 18/20 subjects. Average size of the ROI was 0.42±0.28cm2. In 10/18 subjects, short axis was the most appropriate imaging plane to obtain measurements (p=0.034). Average T1 time of the RV myocardium was 1,016±61ms, and average T1 of the left-ventricular (LV) was 956±25ms (p<0.001). T1 mapping of the RV myocardium is feasible during systole in the majority of healthy subjects but with a small ROI only. SAX plane was the optimal imaging plane in the majority of subjects. Native myocardial T1 time of the RV is significantly longer compared to the LV, which might be explained by the naturally higher collagen content of the RV

    In-flight Performance of the ISOMAX TOF

    Get PDF
    A state-of-the-art time-of-flight (TOF) system has been developed for the ISOMAX balloon-borne cosmic ray instrument. ISOMAX was built to measure the isotopic composition of the light elements in the cosmic rays, (3<Z<8), in particular beryllium. In-flight performance of the TOF, during the first flight in August of 1998, and some isotopic results are presented. The uncorrected timing resolution for a single paddle was determined to be ~47 ps for helium and ~23 ps for carbon

    ^(10)Be/^9Be ratio up to 1.0 GeV/nucleon measured in the ISOMAX 98 balloon flight

    Get PDF
    The Isotope Magnet Experiment, ISOMAX, a balloon-borne superconducting magnet spectrometer was built with the capability to measure the isotopic composition of the light isotopes (3 ≤ Z ≤ 8) of the cosmic radiation up to 4 GeV/nucleon by using the β vs. rigidity technique with a mass resolution better than 0.25 amu, employing a combination of time-of-flight (TOF) system and silica-aerogel Cherenkov counters for the velocity determination. One of the primary scientific goals of ISOMAX was the accurate measurement of radioactive 10 Be with respect to its stable neighbor isotope 9 Be conveying information on the age of the cosmic rays in the galaxy. ISOMAX had its first flight on August 4-5, 1998, from Lynn Lake, Manitoba, Canada. It provided 13 h of data with a residual atmosphere of less than 5 g/cm^2 . This paper reports the results of the beryllium ratio 10 Be/9 Be = 0.195 ± 0.036 at the top of atmosphere in the energy range from 0.261 - 1.030 GeV/nucleon using the TOF in the 1998 flight. The high energy results of the beryllium ratio up to 2 GeV/nucleon in the Cherenkov regime as well as the lithium results in the TOF energy range are also reported in these proceedings

    Guidelines for training in cardiovascular magnetic resonance (CMR)

    Get PDF
    These "Guidelines for training in Cardiovascular Magnetic Resonance" were developed by the Certification Committee of the Society for Cardiovascular Magnetic Resonance (SCMR) and approved by the SCMR Board of Trustees

    Measurement of the Abundance of Radioactive ^(10)Be and Other Light Isotopes in Cosmic Radiation up to 2 GeV Nucleon^(-1) with the Balloon-Borne Instrument Isomax

    Get PDF
    The Isotope Magnet Experiment (ISOMAX), a balloon-borne superconducting magnet spectrometer, was designed to measure the isotopic composition of the light isotopes (3 ≤ Z ≤ 8) of cosmic radiation up to 4 GeV nucleon^(-1) with a mass resolution of better than 0.25 amu by using the velocity versus rigidity technique. To achieve this stringent mass resolution, ISOMAX was composed of three major detector systems: a magnetic rigidity spectrometer with a precision drift chamber tracker in conjunction with a three-layer time-of-flight system, and two silica-aerogel Cerenkov counters for velocity determination. A special emphasis of the ISOMAX program was the accurate measurement of radioactive ^(10)Be with respect to its stable neighbor isotope ^9Be, which provides important constraints on the age of cosmic rays in the Galaxy. ISOMAX had its first balloon flight on 1998 August 4–5 from Lynn Lake, Manitoba, Canada. Thirteen hours of data were recorded during this flight at a residual atmosphere of less than 5 g cm^(-2). The isotopic ratio at the top of the atmosphere for 10Be/9Be was measured to be 0:195 ± 0:036 (statistical) ± 0:039 (systematic) between 0.26 and 1.03 GeV nucleon^(-1) and 0:317 ± 0:109 (statistical) ± 0:042 (systematic) between 1.13 and 2.03 GeV nucleon^(-1). This is the first measurement of its kind above 1 GeV nucleon^(-1). ISOMAX results tend to be higher than predictions from current propagation models. In addition to the beryllium results, we report the isotopic ratios of neighboring lithium and boron in the energy range of the time-of-flight system (up to ~1 GeV nucleon^(-1)). The lithium and boron ratios agree well with existing data and model predictions at similar energies

    ISOMAX: Flight Performance of the Isotope Magnet Experiment

    Get PDF
    ISOMAX, a new balloon-borne cosmic ray instrument developed to measure the isotopic composition of the light elements in the cosmic radiation, was flown for the first time on August 4-5, 1998, from Lynn Lake, Manitoba, Canada. The main purpose of the ISOMAX program is to obtain the ratio of radioactive 10Be to stable 9Be over a wide range of energies, and consequently a wide range of time-dilation factors. Configured for its first flight, ISOMAX has a geometry factor of 450 cm^2sr and uses a large, high-field, superconducting magnet in conjunction with state-of-the-art tracking, time-of-flight, and Cherenkov detectors to measure light isotopes with a mass resolution better than 0.25 amu over the ~0.2-1.7 Ge V /nucleon energy range. In the 1998 flight, the maximum detectable rigidity of the ISO MAX magnetic spectrometer was 970 GV/c for He at 60% of the full magnetic field. ISOMAX returned over 16 hours of data from altitudes of more than 36 km as well as considerable data from lower altitudes. In this paper, a description of the instrument and initial isotopic results will be presented. The performance and results from the individual detector systems are discussed in other papers presented at this meeting
    • …
    corecore