The Isotope Magnet Experiment, ISOMAX, a balloon-borne superconducting magnet spectrometer was built with the capability to measure the isotopic composition of the light isotopes (3 ≤ Z ≤ 8) of the cosmic radiation up to 4 GeV/nucleon by using the β vs. rigidity technique with a mass resolution better than 0.25 amu, employing a combination of time-of-flight (TOF) system and silica-aerogel Cherenkov counters for the velocity determination. One of the primary scientific goals of ISOMAX was the accurate measurement of radioactive 10 Be with respect to its stable neighbor isotope 9 Be conveying information on the age of the cosmic rays in the galaxy. ISOMAX had its first flight on August 4-5, 1998, from Lynn Lake, Manitoba, Canada. It provided 13 h of data with a residual atmosphere of less than 5 g/cm^2 . This paper reports the results of the beryllium ratio 10 Be/9 Be = 0.195 ± 0.036 at the top of atmosphere in the energy range from 0.261 - 1.030 GeV/nucleon using the TOF in the 1998 flight. The high energy results of the beryllium ratio up to 2 GeV/nucleon in the Cherenkov regime as well as the lithium results in the TOF energy range are also reported in these proceedings