30 research outputs found

    Effect of added dietary lysine and methionine above recommended levels, on growth performance, breast meat yield and financial returns in broilers

    Get PDF
    This study investigated the effect of added lysine and methionine above recommended levels in broiler diets, on their growth, breast meat yield and financial returns. A total of 175 one-day-old Cobb 500 chicks were assigned to seven dietary treatments in a completely randomized design. Treatment one (T1) was a control diet formulated to breed specifications. Treatments two (T2) and three (T3) contained 1.2 times recommended levels of Lys and Met respectively. Treatment four (T4) contained Lys and Met at 1.2 times recommended levels. Treatments five (T5) to seven (T7) had similar combinations of Lys and Met as T2 to T4 but their inclusions were 1.4 times recommended levels. On day 43 five birds per treatment were slaughtered for breast meat yield measurements. Broilers on T6 had heavier (P<0.05) breast meat (691.6 g) and tenderloin weights (126.4 g) compared to birds on T1 (491.2 and 93.8 g respectively). The premium on the price of breast meat more than offset the added feed cost of the nutrient dense diets. However, if the finished dressed broilers are to be sold whole and uncut, this trial showed that it is better to feed the birds at the manufacturers recommended levels of Lys and Met. Keywords: Lysine; Methionine; Broilers; Breastmeat; Financial analysi

    Analysis of circulating protein aggregates as a route of investigation into neurodegenerative disorders.

    Get PDF
    Plasma proteome composition reflects the inflammatory and metabolic state of the organism and can be predictive of system-level and organ-specific pathologies. Circulating protein aggregates are enriched with neurofilament heavy chain-axonal proteins involved in brain aggregate formation and recently identified as biomarkers of the fatal neuromuscular disorder amyotrophic lateral sclerosis. Using unbiased proteomic methods, we have fully characterized the content in neuronal proteins of circulating protein aggregates from amyotrophic lateral sclerosis patients and healthy controls, with reference to brain protein aggregate composition. We also investigated circulating protein aggregate protein aggregation propensity, stability to proteolytic digestion and toxicity for neuronal and endothelial cell lines. Circulating protein aggregates separated by ultracentrifugation are visible as electron-dense macromolecular particles appearing as either large globular or as small filamentous formations. Analysis by mass spectrometry revealed that circulating protein aggregates obtained from patients are enriched with proteins involved in the proteasome system, possibly reflecting the underlying basis of dysregulated proteostasis seen in the disease, while those from healthy controls show enrichment of proteins involved in metabolism. Compared to the whole human proteome, proteins within circulating protein aggregates and brain aggregates show distinct chemical features of aggregation propensity, which appear dependent on the tissue or fluid of origin and not on the health status. Neurofilaments' two high-mass isoforms (460 and 268 kDa) showed a strong differential expression in amyotrophic lateral sclerosis compared to healthy control circulating protein aggregates, while aggregated neurofilament heavy chain was also partially resistant to enterokinase proteolysis in patients, demonstrated by immunoreactive bands at 171 and 31 kDa fragments not seen in digested healthy controls samples. Unbiased proteomics revealed that a total of 4973 proteins were commonly detected in circulating protein aggregates and brain, including 24 expressed from genes associated with amyotrophic lateral sclerosis. Interestingly, 285 circulating protein aggregate proteins (5.7%) were regulated (P < 0.05) and are present in biochemical pathways linked to disease pathogenesis and protein aggregation. Biologically, circulating protein aggregates from both patients and healthy controls had a more pronounced effect on the viability of hCMEC/D3 endothelial and PC12 neuronal cells compared to immunoglobulins extracted from the same plasma samples. Furthermore, circulating protein aggregates from patients exerted a more toxic effect than healthy control circulating protein aggregates on both cell lines at lower concentrations (P: 0.03, in both cases). This study demonstrates that circulating protein aggregates are significantly enriched with brain proteins which are representative of amyotrophic lateral sclerosis pathology and a potential source of biomarkers and therapeutic targets for this incurable disorder

    The proteome of neurofilament-containing protein aggregates in blood.

    Get PDF
    Protein aggregation in biofluids is a poorly understood phenomenon. Under normal physiological conditions, fluid-borne aggregates may contain plasma or cell proteins prone to aggregation. Recent observations suggest that neurofilaments (Nf), the building blocks of neurons and a biomarker of neurodegeneration, are included in high molecular weight complexes in circulation. The composition of these Nf-containing hetero-aggregates (NCH) may change in systemic or organ-specific pathologies, providing the basis to develop novel disease biomarkers. We have tested ultracentrifugation (UC) and a commercially available protein aggregate binder, Seprion PAD-Beads (SEP), for the enrichment of NCH from plasma of healthy individuals, and then characterised the Nf content of the aggregate fractions using gel electrophoresis and their proteome by mass spectrometry (MS). Western blot analysis of fractions obtained by UC showed that among Nf isoforms, neurofilament heavy chain (NfH) was found within SDS-stable high molecular weight aggregates. Shotgun proteomics of aggregates obtained with both extraction techniques identified mostly cell structural and to a lesser extent extra-cellular matrix proteins, while functional analysis revealed pathways involved in inflammatory response, phagosome and prion-like protein behaviour. UC aggregates were specifically enriched with proteins involved in endocrine, metabolic and cell-signalling regulation. We describe the proteome of neurofilament-containing aggregates isolated from healthy individuals biofluids using different extraction methods.Medical Research Council (MRC) Industry CASE Studentship (grant number: MR/M015882/1), shared between Queen Mary University of London and Proteome Science

    Enumeration of Functional T-Cell Subsets by Fluorescence-Immunospot Defines Signatures of Pathogen Burden in Tuberculosis

    Get PDF
    IFN-γ and IL-2 cytokine-profiles define three functional T-cell subsets which may correlate with pathogen load in chronic intracellular infections. We therefore investigated the feasibility of the immunospot platform to rapidly enumerate T-cell subsets by single-cell IFN-γ/IL-2 cytokine-profiling and establish whether immunospot-based T-cell signatures distinguish different clinical stages of human tuberculosis infection.We used fluorophore-labelled anti-IFN-γ and anti-IL-2 antibodies with digital overlay of spatially-mapped colour-filtered images to enumerate dual and single cytokine-secreting M. tuberculosis antigen-specific T-cells in tuberculosis patients and in latent tuberculosis infection (LTBI). We validated results against established measures of cytokine-secreting T-cells.Fluorescence-immunospot correlated closely with single-cytokine enzyme-linked-immunospot for IFN-γ-secreting T-cells and IL-2-secreting T-cells and flow-cytometry-based detection of dual IFN-γ/IL-2-secreting T-cells. The untreated tuberculosis signature was dominated by IFN-γ-only-secreting T-cells which shifted consistently in longitudinally-followed patients during treatment to a signature dominated by dual IFN-γ/IL-2-secreting T-cells in treated patients. The LTBI signature differed from active tuberculosis, with higher proportions of IL-2-only and IFN-γ/IL-2-secreting T-cells and lower proportions of IFN-γ-only-secreting T-cells.Fluorescence-immunospot is a quantitative, accurate measure of functional T-cell subsets; identification of cytokine-signatures of pathogen burden, distinct clinical stages of M. tuberculosis infection and long-term immune containment suggests application for treatment monitoring and vaccine evaluation

    Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways

    Get PDF
    Early events in the human airways determining whether exposure to Mycobacterium tuberculosis (Mtb) results in acquisition of infection are poorly understood. Epithelial cells are the dominant cell type in the lungs, but little is known about their role in tuberculosis. We hypothesised that human primary airway epithelial cells are part of the first line of defense against Mtb-infection and contribute to the protective host response in the human respiratory tract. We modelled these early airway-interactions with human primary bronchial epithelial cells (PBECs) and alveolar macrophages. By combining in vitro infection and transwell co-culture models with a global transcriptomic approach, we identified PBECs to be inert to direct Mtb-infection, yet to be potent responders within an Mtb-activated immune network, mediated by IL1β and type I interferon (IFN). Activation of PBECs by Mtb-infected alveolar macrophages and monocytes increased expression of known and novel antimycobacterial peptides, defensins and S100-family members and epithelial-myeloid interactions further shaped the immunological environment during Mtb-infection by promoting neutrophil influx. This is the first in depth analysis of the primary epithelial response to infection and offers new insights into their emerging role in tuberculosis through complementing and amplifying responses to Mtb

    Point prevalence of gastrointestinal parasites of game and captive wildlife in the Kumasi Metropolis, Ghana

    No full text
    The ability to understand the ecological dynamics of parasites allows for a more wholistic insight into the application of the one health concept in wildlife medicine. Using this method, the ecological dynamics of shared gastrointestinal parasites of wildlife, humans and domestic animals in the Kumasi metropolis was determined. The study analyzed 102 faecal samples (59 from game and 43 from captive animals) from Kumasi Metropolis using the flotation and Mcmaster techniques. From the study, the pattern of prevalence for helminth parasites was same for both game and captive animals with Trichostrongyles being the most prevalent (49.2% in game animals and 44.2% in captive animals) followed by Ascarids, Stongyloides spp., and Trichuris spp. Capillaria spp. was least prevalent in captive animals at 23.3% and just a bit more prevalent in game animals (8.5%) than Trichuris spp. (5.1%). Protozoan parasite prevalence pattern differed between game and captive animals with Coccidia (45.8%) more prevalent in game animals than Entamoeba spp. (6.8%). In captive animals Entamoeba spp. (20.9%) was most prevalent followed by Coccidia (13.9%) and then Giardia spp. (11.6%). This confirmed the existence of shared gastrointestinal parasites between wildlife, humans and domestic animals with the potential to be spilled over into wildlife or spilled back to humans and domestic animals, emphasizing the need for more extensive studies in wildlife parasitology and ways in which to reduce the risks posed to humans, wildlife and our domestic animals.Keywords: Parasites; helminths; protozoan; wildlife; Ghana

    Undetected multidrug-resistant tuberculosis amplified by first-line therapy in mixed infection.

    No full text
    Infections with >1 Mycobacterium tuberculosis strain(s) are underrecognized. We show, in vitro and in vivo, how first-line treatment conferred a competitive growth advantage to amplify a multidrug-resistant M. tuberculosis strain in a patient with mixed infection. Diagnostic techniques that identify mixed tubercle bacilli populations are needed to curb the spread of multidrug resistance
    corecore