10 research outputs found

    Neural and behavioural correlates of repeated social defeat

    Get PDF
    © 2018 The Author(s). Dominance hierarchies are common across the animal kingdom and have important consequences for reproduction and survival. Animals of lower social status cope with repeated social defeat using proactive and reactive behaviours. However, there remains a paucity of information on how an individual\u27s coping behaviours changes over time or what neural mechanisms are involved. We used a resident-intruder paradigm in the African cichlid fish Astatotilapia burtoni to investigate the neural correlates of these two opposing behaviour groups. Fish initially used both proactive and reactive behaviours, but had a dramatic increase in use of proactive behaviours during the third interaction, and this was followed by cessation of proactive behaviours and exclusive use of reactive coping. By quantifying neural activation in socially-relevant brain regions, we identify a subset of brain nuclei, including those homologous to the mammalian amygdala, showing higher activation in fish displaying proactive but not reactive behaviours. Fish displaying reactive behaviours had greater neural activation in the superior raphe, suggesting a possible conserved function during social defeat across vertebrates. These data provide the first evidence on the involvement of specific brain regions underlying proactive and reactive coping in fishes, indicating that these nuclei have conserved functions during social defeat across taxa

    Are coping styles consistent in the teleost fish Sparus aurata through sexual maturation and sex reversal?

    No full text
    Individual differences in behaviour and physiological responses to stress are associated with evolutionary adaptive variation and thus raw material for evolution. In farmed animals, the interest in consistent trait associations, i.e. coping styles, has increased dramatically over the last years. However, one of limitations of the available knowledge, regarding the temporal consistency, is that it refers always to short-term consistency (usually few weeks). The present study used an escape response during a net restraining test, previously shown to be an indicative of coping styles in seabream, to investigate long-term consistency of coping styles both over time and during different life history stages. Results showed both short-term (14 days) consistency and long-term (8 months) consistency of escape response. However, we did not found consistency in the same behaviour after sexual maturation when the restraining test was repeated 16, 22 and 23 months after the first test was performed. In conclusion, this study showed consistent behaviour traits in seabream when juveniles, and a loss of this behavioural traits when adults. Therefore, these results underline that adding a life story approach to data interpretation as an essential step forward towards coping styles foreground. Furthermore, a fine-tuning of aquaculture rearing strategies to adapt to different coping strategies may need to be adjusted differently at early stages of development and adults to improve the welfare of farmed fish
    corecore