1,036 research outputs found

    Saturation and alternate pathways in four-wave mixing in rubidium

    Get PDF
    We have examined the frequency spectrum of the blue light generated via four-wave mixing in a rubidium vapor cell inside a ring cavity. At high atomic density and input laser power, two distinct frequency components separated by 116±4116 \pm 4 MHz are observed, indicating alternate four-wave mixing channels through the 6p3/26p_{3/2} hyperfine states. The dependence of the generated light on excitation intensity and atomic density are explored, and indicate the primary process has saturated. This saturation results when the excitation rate through the 6p state becomes equal to the rate through the 5p state, giving no further gain with atomic density while a quadratic intensity dependence remains

    Operating manual for papaya puree processing

    Get PDF

    A low-cost confocal microscope for the undergraduate lab

    Full text link
    We demonstrate a simple and cost-efficient scanning confocal microscope setup for use in advanced instructional physics laboratories. The setup is constructed from readily available commercial products, and the implementation of a 3D-printed flexure stage allows for further cost reduction and pedagogical opportunity. Experiments exploring the thickness of a microscope slide and the surface of solid objects with height variation are presented as foundational components of undergraduate laboratory projects, and demonstrate the capabilities of a confocal microscope. This system allows observation of key components of a confocal microscope, including depth perception and data acquisition via transverse scanning, making it an excellent pedagogical resource

    Papaya puree processing

    Get PDF

    Thermal Performance Testing of Cryogenic Insulation Systems

    Get PDF
    Efficient methods for characterizing thermal performance of materials under cryogenic and vacuum conditions have been developed. These methods provide thermal conductivity data on materials under actual-use conditions and are complementary to established methods. The actual-use environment of full temperature difference in combination with vacuum-pressure is essential for understanding insulation system performance. Test articles include solids, foams, powders, layered blankets, composite panels, and other materials. Test methodology and apparatus design for several insulation test cryostats are discussed. The measurement principle is liquid nitrogen boil-off calorimetry. Heat flux capability ranges from approximately 0.5 to 500 watts per square meter; corresponding apparent thermal conductivity values range from below 0.01 up to about 60 mW/m- K. Example data for different insulation materials are also presented. Upon further standardization work, these patented insulation test cryostats can be available to industry for a wide range of practical applications

    High Density Mesoscopic Atom Clouds in a Holographic Atom Trap

    Full text link
    We demonstrate the production of micron-sized high density atom clouds of interest for meso- scopic quantum information processing. We evaporate atoms from 60 microK, 3x10^14 atoms/cm^3 samples contained in a highly anisotropic optical lattice formed by interfering di racted beams from a holographic phase plate. After evaporating to 1 microK by lowering the con ning potential, in less than a second the atom density reduces to 8x10^13 cm^- 3 at a phase space density approaching unity. Adiabatic recompression of the atoms then increases the density to levels in excess of 1x10^15 cm^-3. The resulting clouds are typically 8 microns in the longest dimension. Such samples are small enough to enable mesoscopic quantum manipulation using Rydberg blockade and have the high densities required to investigate new collision phenomena.Comment: 4 pages, 4 figures, submitted to PR

    Mango puree processing

    Get PDF
    corecore