4 research outputs found
Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases
Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, Pâ=â1.3Ă10â10) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (Pâ=â1.7Ă10â4, 1.8Ă10â4, and 2.2Ă10â4 respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates
Association of a variant in the muscarinic acetylcholine receptor 2 gene (CHRM2) with nicotine addiction.
Genetic factors contribute to the overall risk of developing nicotine addiction, which is the major cause of preventable deaths in western countries. However, knowledge regarding specific polymorphisms influencing smoking phenotypes remains scarce. In the present study we provide evidence that a common single nucleotide polymorphism (SNP) in the 5' untranslated region of CHRM2, the gene coding for the muscarinic acetylcholine receptor 2 is associated with nicotine addiction. CHRM2 was defined as a candidate gene for nicotine addiction based on previous evidence that linked variations in CHRM2 to alcohol and drug dependence. A total of more than 5,500 subjects representative of the German population were genotyped and assessed regarding their smoking habits. The impact of three SNPs in CHRM2 on smoking behavior/nicotine addiction was investigated using logistic regression models or a quasi-Poisson regression model, respectively. We found the T allele of SNP rs324650 to be associated with an increased risk of smoking/nicotine dependence according to three different models, the recessive models of regular or heavy smokers vs. never-smokers (odds ratio 1.17 in both analyses) and according to the Fagerström index of nicotine addiction. In the analysis stratified by gender this association was only found in females. Our data provide further evidence that variations in CHRM2 may be associated with the genetic risk of addiction in general or with certain personality traits that predispose to the development of addiction. Alternatively, variations in CHRM2 could modulate presynaptic auto-regulation in cholinergic systems and may thereby affect an individual's response to nicotine more specifically