8 research outputs found

    Initial Steps Towards a Clinical FLASH Radiotherapy System: Pediatric Whole Brain Irradiation with 40 MeV Electrons at FLASH Dose Rates

    Get PDF
    In this work, we investigated the delivery of a clinically acceptable pediatric whole brain radiotherapy plan at FLASH dose rates using two lateral opposing 40-MeV electron beams produced by a practically realizable linear accelerator system. The EGSnrc Monte Carlo software modules, BEAMnrc and DOSXYZnrc, were used to generate whole brain radiotherapy plans for a pediatric patient using two lateral opposing 40-MeV electron beams. Electron beam phase space files were simulated using a model of a diverging beam with a diameter of 10 cm at 50 cm SAD (defined at brain midline). The electron beams were collimated using a 10-cm-thick block composed of 5 cm of aluminum oxide and 5 cm of tungsten. For comparison, a 6-MV photon plan was calculated with the Varian AAA algorithm. Electron beam parameters were based on a novel linear accelerator designed for the PHASER system and powered by a commercial 6-MW klystron. Calculations of the linear accelerator's performance indicated an average beam current of at least 6.25 µA, providing a dose rate of 115 Gy/s at isocenter, high enough for cognition-sparing FLASH effects. The electron plan was less homogenous with a homogeneity index of 0.133 compared to the photon plan's index of 0.087. Overall, the dosimetric characteristics of the 40-MeV electron plan were suitable for treatment. In conclusion, Monte Carlo simulations performed in this work indicate that two lateral opposing 40-MeV electron beams can be used for pediatric whole brain irradiation at FLASH dose rates of >115 Gy/s and serve as motivation for a practical clinical FLASH radiotherapy system, which can be implemented in the near future

    FLASH Irradiation Results in Reduced Severe Skin Toxicity Compared to Conventional-Dose-Rate Irradiation

    Get PDF
    Radiation therapy, along with surgery and chemotherapy, is one of the main treatments for cancer. While radiotherapy is highly effective in the treatment of localized tumors, its main limitation is its toxicity to normal tissue. Previous preclinical studies have reported that ultra-high dose-rate (FLASH) irradiation results in reduced toxicity to normal tissues while controlling tumor growth to a similar extent relative to conventional-dose-rate (CONV) irradiation. To our knowledge this is the first report of a dose-response study in mice comparing the effect of FLASH irradiation vs. CONV irradiation on skin toxicity. We found that FLASH irradiation results in both a lower incidence and lower severity of skin ulceration than CONV irradiation 8 weeks after single-fraction hemithoracic irradiation at high doses (30 and 40 Gy). Survival was also higher after FLASH hemithoracic irradiation (median survival >180 days at doses of 30 and 40 Gy) compared to CONV irradiation (median survival 100 and 52 days at 30 and 40 Gy, respectively). No ulceration was observed at doses 20 Gy or below in either FLASH or CONV. These results suggest a shifting of the dose-response curve for radiation-induced skin ulceration to the right for FLASH, compared to CONV irradiation, suggesting the potential for an enhanced therapeutic index for radiation therapy of cancer

    Molecular signaling network complexity is correlated with cancer patient survivability

    No full text
    The 5-y survival for cancer patients after diagnosis and treatment is strongly dependent on tumor type. Prostate cancer patients have a >99% chance of survival past 5 y after diagnosis, and pancreatic patients have <6% chance of survival past 5 y. Because each cancer type has its own molecular signaling network, we asked if there are “signatures” embedded in these networks that inform us as to the 5-y survival. In other words, are there statistical metrics of the network that correlate with survival? Furthermore, if there are, can such signatures provide clues to selecting new therapeutic targets? From the Kyoto Encyclopedia of Genes and Genomes Cancer Pathway database we computed several conventional and some less conventional network statistics. In particular we found a correlation (R(2) = 0.7) between degree-entropy and 5-y survival based on the Surveillance Epidemiology and End Results database. This correlation suggests that cancers that have a more complex molecular pathway are more refractory than those with less complex molecular pathway. We also found potential new molecular targets for drugs by computing the betweenness—a statistical metric of the centrality of a node—for the molecular networks

    Multicellular spheroids as in vitro models of oxygen depletion during FLASH irradiation

    No full text
    Purpose The differential response of normal and tumor tissues to ultra-high dose rate radiation (FLASH) has raised new hope for treating solid tumors but, to date, the mechanism remains elusive. One leading hypothesis is that FLASH radiochemically depletes oxygen from irradiated tissues faster than it is replenished through diffusion. The purpose of this study is to investigate these effects within hypoxic multicellular tumor spheroids, through simulations and experiments. Materials and Methods Physicobiological equations were derived to model (i) the diffusion and metabolism of oxygen within spheroids; (ii) its depletion through reactions involving radiation-induced radicals; and (iii) the increase in radioresistance of spheroids, modeled according to the classical oxygen enhancement ratio and linear-quadratic response. These predictions were then tested experimentally in A549 spheroids exposed to electron irradiation at conventional (0.075 Gy/s) or FLASH (90 Gy/s) dose rates. Clonogenic survival, cell viability, and spheroid growth were scored post-radiation. Clonogenic survival of two other cell lines was also investigated. Results The existence of a hypoxic core in unirradiated tumor spheroids is predicted by simulations and visualized by fluorescence microscopy. Upon FLASH irradiation, this hypoxic core transiently expands, engulfing a large number of well-oxygenated cells. In contrast, oxygen is steadily replenished during slower conventional irradiation. Experimentally, clonogenic survival was around 3-fold higher in FLASH-irradiated spheroid compared to conventional irradiation, but no significant difference was observed for well-oxygenated 2D-cultured cells. This differential survival is consistent with the predictions of the computational model. FLASH irradiation of spheroids resulted in a dose-modifying factor of around 1.3 for doses above 10 Gy. Conclusion Tumor spheroids can be used as a model to study FLASH irradiation in vitro . The improved survival of tumor spheroids receiving FLASH radiation confirms that ultra-fast radiochemical oxygen depletion and its slow replenishment are critical components of the FLASH effect

    Treatment planning system commissioning of the first clinical biology-guided radiotherapy machine.

    No full text
    PurposeThe RefleXion X1 is a novel radiotherapy machine designed for image-guided radiotherapy (IGRT) and biology-guided radiotherapy (BgRT). Its treatment planning system (TPS) generates IMRT and SBRT plans for a 6MV-FFF beam delivered axially via 50 firing positions with the couch advancing every 2.1&nbsp;mm. The purpose of this work is to report the TPS commissioning results for the first clinical installation of RefleXion™ X1.MethodsCT images of multiple phantoms were imported into the RefleXion TPS to evaluate the accuracy of data transfer, anatomical modeling, plan evaluation, and dose calculation. Comparisons were made between the X1, Eclipse™, and MIM™. Dosimetric parameters for open static fields were evaluated in water and heterogeneous slab phantoms. Representative clinical IMRT and SBRT cases were planned and verified with ion chamber, film, and ArcCHECK@ measurements. The agreement between TPS and measurements for various clinical plans was evaluated using Gamma analysis with a criterion of 3%/2&nbsp;mm for ArcCHECK@ and film. End-to-end (E2E) testing was performed using anthropomorphic head and lung phantoms.ResultsThe average difference between the TPS-reported and known HU values was -1.4 ± 6.0 HU. For static fields, the agreements between the TPS-calculated and measured PDD10 , crossline profiles, and inline profiles (FWHM) were within 1.5%, 1.3%, and 0.5&nbsp;mm, respectively. Measured output factors agreed with the TPS within 1.3%. Measured and calculated dose for static fields in heterogeneous phantoms agreed within 2.5%. The ArcCHECK@ mean absolute Gamma passing rate was 96.4% ± 3.4% for TG 119 and TG 244 plans and 97.8% ± 3.6% for the 21 clinical plans. E2E film analysis showed 0.8&nbsp;mm total targeting error for isocentric and 1.1&nbsp;mm for off-axis treatments.ConclusionsThe TPS commissioning results of the RefleXion X1 TPS were within the tolerances specified by AAPM TG 53, MPPG 5.a, TG 119, and TG 148. A subset of the commissioning tests has been identified as baseline data for an ongoing QA program

    IMRT and SBRT Treatment Planning Study for the First Clinical Biology-Guided Radiotherapy System.

    No full text
    Purpose: The first clinical biology-guided radiation therapy (BgRT) system-RefleXionTM X1-was installed and commissioned for clinical use at our institution. This study aimed at evaluating the treatment plan quality and delivery efficiency for IMRT/SBRT cases without PET guidance. Methods: A total of 42 patient plans across 6 cancer sites (conventionally fractionated lung, head, and neck, anus, prostate, brain, and lung SBRT) planned with the EclipseTM treatment planning system (TPS) and treated with either a TrueBeam® or Trilogy® were selected for this retrospective study. For each Eclipse VMAT plan, 2 corresponding plans were generated on the X1 TPS with 10 mm jaws (X1-10mm) and 20 mm jaws (X1-20mm) using our institutional planning constraints. All clinically relevant metrics in this study, including PTV D95%, PTV D2%, Conformity Index (CI), R50, organs-at-risk (OAR) constraints, and beam-on time were analyzed and compared between 126 VMAT and RefleXion plans using paired t-tests. Results: All but 3 planning metrics were either equivalent or superior for the X1-10mm plans as compared to the Eclipse VMAT plans across all planning sites investigated. The Eclipse VMAT and X1-10mm plans generally achieved superior plan quality and sharper dose fall-off superior/inferior to targets as compared to the X1-20mm plans, however, the X1-20mm plans were still considered acceptable for treatment. On average, the required beam-on time increased by a factor of 1.6 across all sites for X1-10mm compared to X1-20mm plans. Conclusions: Clinically acceptable IMRT/SBRT treatment plans were generated with the X1 TPS for both the 10 mm and 20 mm jaw settings
    corecore