21 research outputs found

    How to verify fossil tracks: the first record of dinosaurs from Palestine

    Get PDF
    The identification of presumed tetrapod tracks is not always unequivocal. Other sedimentary structures have been repeatedly mistaken for tracks, including other trace fossils such as arthropod tracks, burrows and fish feeding traces; erosional features; and human-made traces. We here review instances of difficult, ambiguous, or controversial cases that have been discussed in the literature. We then discuss four main criteria for the verification of tetrapod tracks: (1) preservation of regular trackway morphology, (2) preservation of track morphology, (3) deformation structures (best seen in cross-section) and (4) the temporal or environmental context. Of these criteria, criterion 1 is the most unambiguous and has rarely been challenged. We apply these criteria to a new site located within the city of Al-Bireh, Palestine, which belongs to the Lower Cretaceous (Albian) Soreq Formation. The site preserves a surface with many indistinct depressions that lack anatomical detail. Two unequivocal trackways are identified per criterion 1, demonstrating the first known occurrence of dinosaur fossils in Palestine. The tracksite is part of the late Lower Cretaceous carbonate platform of the eastern Levant, demonstrating temporal emergence of the platform above sea level and a connection to the mainland

    Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    Get PDF
    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models

    A standard protocol for documenting modern and fossil ichnological data

    Get PDF
    The collection and dissemination of vertebrate ichnological data is struggling to keep up with techniques that are becoming common place in the wider palaeontological field. A standard protocol is required in order to ensure that data is recorded, presented, and archived in a manner that will be useful both to contemporary researchers, and to future generations. Primarily, our aim is to make the 3D capture of ichnological data standard practice, and to provide guidance on how such 3D data can be communicated effectively (both via the literature and other means), and archived openly and in perpetuity. We recommend capture of 3D data, and the presentation of said data in the form of photographs, false-colour images, and interpretive drawings. Raw data (3D models of traces) should always be provided in a form usable by other researchers, i.e. in an open format. If adopted by the field as a whole, the result will be a more robust and uniform literature, supplemented by unparalleled availability of datasets for future workers

    Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans

    No full text
    Richter N, Gröger H, Hummel W. Asymmetric reduction of activated alkenes using an enoate reductase from Gluconobacter oxydans. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 2011;89(1):79-89.A recombinant enoate reductase from Gluconobacter oxydans was heterologously expressed, purified, characterised and applied in the asymmetric reduction of activated alkenes. In addition to the determination of the kinetic properties, the major focus of this work was to utilise the enzyme in the biotransformation of different interesting compounds such as 3,5,5-trimethyl-2-cyclohexen-1,4-dione (ketoisophorone) and (E/Z)-3,7-dimethyl-2,6-octadienal (citral). The reaction proceeded with excellent stereoselectivities (>99% ee) as well as absolute chemo-and regioselectivity, only the activated C-C bond of citral was reduced by the enoate reductase, while non-activated C-C bond and carbonyl moiety remained untouched. The described strategy can be used for the production of enantiomerically pure building blocks, which are difficult to prepare by chemical means. In general, the results show that the investigated enoate reductase is a promising catalyst for the use in asymmetric C-C bond reductions
    corecore