132 research outputs found

    Analysis of a viral metagenomic library from 200 m depth in Monterey Bay, California constructed by direct shotgun cloning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses have a profound influence on both the ecology and evolution of marine plankton, but the genetic diversity of viral assemblages, particularly those in deeper ocean waters, remains poorly described. Here we report on the construction and analysis of a viral metagenome prepared from below the euphotic zone in a temperate, eutrophic bay of coastal California.</p> <p>Methods</p> <p>We purified viruses from approximately one cubic meter of seawater collected from 200m depth in Monterey Bay, CA. DNA was extracted from the virus fraction, sheared, and cloned with no prior amplification into a plasmid vector and propagated in <it>E. coli </it>to produce the MBv200m library. Random clones were sequenced by the Sanger method. Sequences were assembled then compared to sequences in GenBank and to other viral metagenomic libraries using BLAST analyses.</p> <p>Results</p> <p>Only 26% of the 881 sequences remaining after assembly had significant (E ≤ 0.001) BLAST hits to sequences in the GenBank nr database, with most being matches to bacteria (15%) and viruses (8%). When BLAST analysis included environmental sequences, 74% of sequences in the MBv200m library had a significant match. Most of these hits (70%) were to microbial metagenome sequences and only 0.7% were to sequences from viral metagenomes. Of the 121 sequences with a significant hit to a known virus, 94% matched bacteriophages (Families <it>Podo</it>-, <it>Sipho</it>-, and <it>Myoviridae</it>) and 6% matched viruses of eukaryotes in the Family <it>Phycodnaviridae </it>(5 sequences) or the Mimivirus (2 sequences). The largest percentages of hits to viral genes of known function were to those involved in DNA modification (25%) or structural genes (17%). Based on reciprocal BLAST analyses, the MBv200m library appeared to be most similar to viral metagenomes from two other bays and least similar to a viral metagenome from the Arctic Ocean.</p> <p>Conclusions</p> <p>Direct cloning of DNA from diverse marine viruses was feasible and resulted in a distribution of virus types and functional genes at depth that differed in detail, but were broadly similar to those found in surface marine waters. Targeted viral analyses are useful for identifying those components of the greater marine metagenome that circulate in the subcellular size fraction.</p

    Co-occurrence of diabetes and hopelessness predicts adverse prognosis following percutaneous coronary intervention

    Get PDF
    We examined the impact of co-occurring diabetes and hopelessness on 3-year prognosis in percutaneous coronary intervention patients. Consecutive patients (n = 534) treated with the paclitaxel-eluting stent completed a set of questionnaires at baseline and were followed up for 3-year adverse clinical events. The incidence of 3-year death/non-fatal myocardial infarction was 3.5% in patients with no risk factors (neither hopelessness nor diabetes), 8.2% in patients with diabetes, 11.2% in patients with high hopelessness, and 15.9% in patients with both factors (p = 0.001). Patients with hopelessness (HR: 3.28; 95% CI: 1.49-7.23) and co-occurring diabetes and hopelessness (HR: 4.89; 95% CI: 1.86-12.85) were at increased risk of 3-year adverse clinical events compared to patients with no risk factors, whereas patients with diabetes were at a clinically relevant but not statistically significant risk (HR: 2.40; 95% CI: 0.82-7.01). These results remained, adjusting for baseline characteristics an

    Gene-enhanced tissue engineering for dental hard tissue regeneration: (1) overview and practical considerations

    Get PDF
    Gene-based therapies for tissue regeneration involve delivering a specific gene to a target tissue with the goal of changing the phenotype or protein expression profile of the recipient cell; the ultimate goal being to form specific tissues required for regeneration. One of the principal advantages of this approach is that it provides for a sustained delivery of physiologic levels of the growth factor of interest. This manuscript will review the principals of gene-enhanced tissue engineering and the techniques of introducing DNA into cells. Part 2 will review recent advances in gene-based therapies for dental hard tissue regeneration, specifically as it pertains to dentin regeneration/pulp capping and periodontal regeneration

    Human oral viruses are personal, persistent and gender-consistent.

    Get PDF
    Viruses are the most abundant members of the human oral microbiome, yet relatively little is known about their biodiversity in humans. To improve our understanding of the DNA viruses that inhabit the human oral cavity, we examined saliva from a cohort of eight unrelated subjects over a 60-day period. Each subject was examined at 11 time points to characterize longitudinal differences in human oral viruses. Our primary goals were to determine whether oral viruses were specific to individuals and whether viral genotypes persisted over time. We found a subset of homologous viral genotypes across all subjects and time points studied, suggesting that certain genotypes may be ubiquitous among healthy human subjects. We also found significant associations between viral genotypes and individual subjects, indicating that viruses are a highly personalized feature of the healthy human oral microbiome. Many of these oral viruses were not transient members of the oral ecosystem, as demonstrated by the persistence of certain viruses throughout the entire 60-day study period. As has previously been demonstrated for bacteria and fungi, membership in the oral viral community was significantly associated with the sex of each subject. Similar characteristics of personalized, sex-specific microflora could not be identified for oral bacterial communities based on 16S rRNA. Our findings that many viruses are stable and individual-specific members of the oral ecosystem suggest that viruses have an important role in the human oral ecosystem

    Graft healing in anterior cruciate ligament reconstruction

    Get PDF
    Successful anterior cruciate ligament reconstruction with a tendon graft necessitates solid healing of the tendon graft in the bone tunnel. Improvement of graft healing to bone is crucial for facilitating an early and aggressive rehabilitation and ensuring rapid return to pre-injury levels activity. Tendon graft healing in a bone tunnel requires bone ingrowth into the tendon. Indirect Sharpey fiber formation and direct fibrocartilage fixation confer different anchorage strength and interface properties at the tendon-bone interface. For enhancing tendon graft-to-bone healing, we introduce a strategy that includes the use of periosteum, hydrogel supplemented with periosteal progenitor cells and bone morphogenetic protein-2, and a periosteal progenitor cell sheet. Future studies include the use of cytokines, gene therapy, stem cells, platelet-rich plasma, and mechanical stress for tendon-to-bone healing. These strategies are currently under investigation, and will be applied in the clinical setting in the near future

    Curation of viral genomes: challenges, applications and the way forward

    Get PDF
    BACKGROUND: Whole genome sequence data is a step towards generating the 'parts list' of life to understand the underlying principles of Biocomplexity. Genome sequencing initiatives of human and model organisms are targeted efforts towards understanding principles of evolution with an application envisaged to improve human health. These efforts culminated in the development of dedicated resources. Whereas a large number of viral genomes have been sequenced by groups or individuals with an interest to study antigenic variation amongst strains and species. These independent efforts enabled viruses to attain the status of 'best-represented taxa' with the highest number of genomes. However, due to lack of concerted efforts, viral genomic sequences merely remained as entries in the public repositories until recently. RESULTS: VirGen is a curated resource of viral genomes and their analyses. Since its first release, it has grown both in terms of coverage of viral families and development of new modules for annotation and analysis. The current release (2.0) includes data for twenty-five families with broad host range as against eight in the first release. The taxonomic description of viruses in VirGen is in accordance with the ICTV nomenclature. A well-characterised strain is identified as a 'representative entry' for every viral species. This non-redundant dataset is used for subsequent annotation and analyses using sequenced-based Bioinformatics approaches. VirGen archives precomputed data on genome and proteome comparisons. A new data module that provides structures of viral proteins available in PDB has been incorporated recently. One of the unique features of VirGen is predicted conformational and sequential epitopes of known antigenic proteins using in-house developed algorithms, a step towards reverse vaccinology. CONCLUSION: Structured organization of genomic data facilitates use of data mining tools, which provides opportunities for knowledge discovery. One of the approaches to achieve this goal is to carry out functional annotations using comparative genomics. VirGen, a comprehensive viral genome resource that serves as an annotation and analysis pipeline has been developed for the curation of public domain viral genome data . Various steps in the curation and annotation of the genomic data and applications of the value-added derived data are substantiated with case studies
    corecore