116 research outputs found

    Interpreting Attoclock Measurements of Tunnelling Times

    Full text link
    Resolving in time the dynamics of light absorption by atoms and molecules, and the electronic rearrangement this induces, is among the most challenging goals of attosecond spectroscopy. The attoclock is an elegant approach to this problem, which encodes ionization times in the strong-field regime. However, the accurate reconstruction of these times from experimental data presents a formidable theoretical challenge. Here, we solve this problem by combining analytical theory with ab-initio numerical simulations. We apply our theory to numerical attoclock experiments on the hydrogen atom to extract ionization time delays and analyse their nature. Strong field ionization is often viewed as optical tunnelling through the barrier created by the field and the core potential. We show that, in the hydrogen atom, optical tunnelling is instantaneous. By calibrating the attoclock using the hydrogen atom, our method opens the way to identify possible delays associated with multielectron dynamics during strong-field ionization.Comment: 33 pages, 10 figures, 3 appendixe

    Dispersing the Mists: An Experimental History of Medicine Study into the Quality of Volatile Inhalations

    Get PDF
    This document is the Accepted Manuscript version. The final publication is available from Mary Ann Liebert, Inc. Publishers at https://doi.org/10.1089/jamp.2016.1357.Background: Dr. Nelson's Improved Inhaler was first marketed with an advertisement in The Lancet in 1865. Revolutionary at the time for its ease of use and patient-friendliness, the inhaler is still in use for self-treatment by many all over the world. On the occasion of its 150th anniversary, this study reports an experimental historical medicine approach to identify evidence for the quality of vapor inhalers. Methods: Through accessing reviews of the device's use by the contemporary medical establishment, it was established that Dr. Nelson's Inhaler enjoyed a reputation of quality and efficacy among reputable physicians generating empirical evidence of clinical performance. There was a general absence of product performance tests during this period. Therefore, modern inhalation performance testing was applied to test the aerosol delivery performance for Friars' Balsam, and its key chemical constituent, benzoic acid (BA). Results: A respirable dose of 59.9 ± 9.0 μg of BA was aerosolized in a 10 minutes period from a dose of 3.3 mL Friars' Balsam (equivalent to 35.1 ± 0.2 mg of BA) in 375 mL of steaming water using the glass twin stage impinger at a flow rate of 60 L·min−1. The respirable dose from a standardized aqueous BA inhalation formulation increased from 115.9 ± 10.6 to 200.2 ± 19.9 μg by increasing the simulated inhalation period from 5 to 10 minutes. When tested with a simulated inhalation maneuver (500 mL tidal volume, 13 minutes−1 respiration rate, 1:2 inspiratory:expiratory ratio) a respirable dose of 112.8 ± 40.3 μg was produced. Conclusions: This work has highlighted the potential for aerosol drug delivery using steam inhalers that are popular with patients. Physicians should therefore be aware of the potential for lung dosing with irritants when patients self-medicate using the Nelson Inhaler with vaporizing formulations such as Friars' Balsam.Peer reviewedFinal Accepted Versio

    Attosecond imaging of molecular electronic wavepackets

    Get PDF
    International audienceA strong laser field may tunnel ionize a molecule from several orbitals simultaneously, forming an attosecond electron–hole wavepacket. Both temporal and spatial information on this wavepacket can be obtained through the coherent soft X-ray emission resulting from the laser-driven recollision of the liberated electron with the core. By characterizing the emission from aligned N 2 molecules, we demonstrate the attosecond contributions of the two highest occupied molecular orbitals. We determine conditions where they are disentangled in the real and imaginary parts of the emission dipole moment. This allows us to carry out a tomographic reconstruction of both orbitals with angstrom spatial resolution. Their coherent superposition provides experimental images of the attosecond wavepacket created in the ionization process. Our results open the prospect of imaging ultrafast intramolecular dynamics combining attosecond and angstrom resolutions

    Species-specific behavioral patterns correlate with differences in synaptic connections between homologous mechanosensory neurons

    Get PDF
    We characterized the behavioral responses of two leech species, Hirudo verbana and Erpobdella obscura, to mechanical skin stimulation and examined the interactions between the pressure mechanosensory neurons (P cells) that innervate the skin. To quantify behavioral responses, we stimulated both intact leeches and isolated body wall preparations from the two species. In response to mechanical stimulation, Hirudo showed local bending behavior, in which the body wall shortened only on the side of the stimulation. Erpobdella, in contrast, contracted both sides of the body in response to touch. To investigate the neuronal basis for this behavioral difference, we studied the interactions between P cells. Each midbody ganglion has four P cells; each cell innervates a different quadrant of the body wall. Consistent with local bending, activating any one P cell in Hirudo elicited polysynaptic inhibitory potentials in the other P cells. In contrast, the P cells in Erpobdella had excitatory polysynaptic connections, consistent with the segment-wide contraction observed in this species. In addition, activating individual P cells caused asymmetrical body wall contractions in Hirudo and symmetrical body wall contractions in Erpobdella. These results suggest that the different behavioral responses in Erpobdella and Hirudo are partly mediated by interactions among mechanosensory cells

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Post-Haeckelian Comparative Biology ? Adolf Naef's Idealistic Morphology

    No full text

    Editorial: Evolution and neural control of autonomous systems

    No full text
    corecore