17 research outputs found

    Biological effects of resveratrol on skeletal muscle cells

    Get PDF
    Resveratrol, a polyphenol found in red wine, has been reported to have antithrombotic, antiatherogenic, and anticancer properties both in vitro and III VIVO. However, possible antidiabetic properties of resveratrol have not been examined. The objective of this study was to investigate the direct effects of resveratrol on basal and insulin-stimulated glucose uptake and to elucidate its mechanism of action in skeletal muscle cells. In addition, the effects of resveratrol on basal and insulin- stimulated amino acid transport and mitogenesis were also examined. Fully differentiated L6 rat skeletal muscle cells were incubated with resveratrol concentrations ranging from 1 to 250 IlM for 15 to 120 min. Maximum stimulation, 201 ± 8.90% of untreated control, (p<0.001), of2eH] deoxy- D- glucose (2DG) uptake was seen with 100 IlM resveratrol after 120 min. Acute, 30 min, exposure of the cells to 100 nM insulin stimulated 2DG uptake to 226 ± 12.52% of untreated control (p<0.001). This appears to be a specific property of resveratrol that is not shared by structurally similar antioxidants such as quercetin and rutin, both of which did not have any stimulatory effect. Resveratrol increased the response of the cells to submaximal insulin concentrations but did not alter the maximum insulin response. Resveratrol action did not require insulin and was not blocked by the protein synthesis inhibitor cycloheximide. L Y294002 and wortmannin, inhibitors of PI3K, abolished both insulin and resveratrolstimulated glucose uptake while phosphorylation of AktlPKB, ERK1I2, JNK1I2, and p38 MAPK were not increased by resveratrol. Resveratrol did not stimulate GLUT4 transporter translocation in GLUT4cmyc overexpressing cells, in contrast to the significant translocation observed with insulin. Furthermore, resveratrol- stimulated glucose transport was not blocked by the presence of the protein kinase C (PKC) inhibitors BIMI and G06983. Despite that, resveratrol- induced glucose transport required an intact actin network, similar to insulin. In contrast to the stimulatory effect seen with resveratrol for glucose transport, e4C]methylaminoisobutyric acid (MeAIB) transport was inhibited. Significant reduction of MeAIB uptake was seen only with 100uM resveratrol (74.2 ± 6.55% of untreated control, p<0.05), which appeared to be maximum. In parallel experiments, insulin (100 nM, 30 min) increased MeAIB transport by 147 ± 5.77% (p<0.00l) compared to untreated control. In addition, resveratrol (100 JlM, 120 min) completely abolished insulin- stimulated amino acid transport (103 ± 7.35% of untreated control,p>0.05). Resveratrol also inhibited cell proliferation in L6 myoblasts with maximal inhibition of eH]thymidine incorporation observed with resveratrol at 50 J.LM after 24 hours (8 ± 1.59% of untreated control, p<O.OOI). Insulin (100 nM, 24 h) significantly increased thymidine incorporation (280 ± 9.92% of untreated control, p<O.OOI) and media containing 10% FBS resulted in stimulation of thymidine incorporation to 691 ± 36.92% of untreated control, p<O.OO1. Resveratrol (50JlM) completely abolished both insulin- (11 ± 1.26% of untreated control,p<O.OOI) and FBS- stimulated (36 ± 5.16% of untreated control, p<0.05) cell proliferation. These results suggest that resveratrol increases glucose transport in L6 skeletal muscle cells by a mechanism that is in4ependent of insulin and protein synthesis. Resveratrol- stimulated glucose uptake may be PI3K and actin cytoskeleton- dependent and independent of AktIPKB, PKC, ERK1I2, JNK1I2, p38 MAPK, and GLUT4 translocation. However, unlike glucose transport, resveratrol inhibits both basal and insulin- stimulated amino acid transport and mitogenesis

    GDF15 Provides an Endocrine Signal of Nutritional Stress in Mice and Humans.

    Get PDF
    GDF15 is an established biomarker of cellular stress. The fact that it signals via a specific hindbrain receptor, GFRAL, and that mice lacking GDF15 manifest diet-induced obesity suggest that GDF15 may play a physiological role in energy balance. We performed experiments in humans, mice, and cells to determine if and how nutritional perturbations modify GDF15 expression. Circulating GDF15 levels manifest very modest changes in response to moderate caloric surpluses or deficits in mice or humans, differentiating it from classical intestinally derived satiety hormones and leptin. However, GDF15 levels do increase following sustained high-fat feeding or dietary amino acid imbalance in mice. We demonstrate that GDF15 expression is regulated by the integrated stress response and is induced in selected tissues in mice in these settings. Finally, we show that pharmacological GDF15 administration to mice can trigger conditioned taste aversion, suggesting that GDF15 may induce an aversive response to nutritional stress.This work and authors were funded by the NIHR Cambridge Biomedical Research Centre; NIHR Rare Disease Translational Research Collaboration; Medical Research Council [MC_UU_12012/2 and MRC_MC_UU_12012/3]; MRC Metabolic Diseases Unit [MRC_MC_UU_12012/5 and MRC_MC_UU_12012.1]; Wellcome Trust Strategic Award [100574/Z/12/Z and 100140]; Wellcome Trust [107064 , 095515/Z/11/Z , 098497/Z/12/Z, 106262/Z/14/Z and 106263/Z/14/Z]; British Heart Foundation [RG/12/13/29853]; Addenbrooke’s Charitable Trust / Evelyn Trust Cambridge Clinical Research Fellowship [16-69] US Department of Agriculture: 2010-34323-21052; EFSD project grant and a Royal College of Surgeons Research Fellowship, Diabetes UK Harry Keen intermediate clinical fellowship (17/0005712). European Research Council, Bernard Wolfe Health Neuroscience Endowment, Experimental Medicine Training Initiative/AstraZeneca and Medimmune

    Vasculoprotective Effects of Insulin and Resveratrol In Vivo

    No full text
    Atherosclerosis is a leading cause of morbidity and mortality worldwide and type 2 diabetes and obesity-associated metabolic syndrome, both characterized by insulin resistance, are potent risk factors. These conditions also increase the risk for restenosis after revascularization procedures used for treatment of atherosclerosis. Studies have shown that insulin and resveratrol (RSV), a red wine polyphenol, decrease neointimal growth after vessel injury in models of restenosis, demonstrating a protective effect on the vasculature. However, oral glucose and sucrose were used in insulin studies to maintain normoglycemia, and their effect on neointimal formation was not assessed. Several studies have shown that nitric oxide (NO) production is stimulated by insulin and RSV, and since NO can decrease neointimal growth, the objective of this thesis was to address the mechanism of action of insulin or RSV to protect against restenosis, and determine whether NO production mediates these effects. To examine this, we treated rats with insulin or RSV and performed arterial balloon injury. In Study 1, insulin reduced neointimal area after injury in rats receiving oral glucose but not oral sucrose. Oral glucose alone had no effect on neointimal formation or insulin sensitivity whereas oral sucrose increased neointimal growth and induced insulin resistance. In Study 2, insulin decreased neointimal area and cell migration, and increased re-endothelialization. These effects were abolished by nitric oxide synthase (NOS) inhibition. In addition, insulin increased eNOS protein expression in the vessel. In Study 3, RSV reduced neointimal growth, cell proliferation, and migration after injury, without affecting re-endothelialization. Most of these effects were abolished by NOS inhibition, except for the decrease in cell migration. Insulin sensitivity and systolic blood pressure were not affected by RSV. Together, the results demonstrate that insulin, independent of glycemic effects, and RSV have a protective effect on the vessel against restenosis, which is mediated by NO. Since both insulin and RSV decrease neointimal formation without negatively impacting re-endothelialization, insulin or RSV treatment could provide some advantage over anti-mitogenic agents currently used in drug-eluting stents, which delay re-endothelialization. These studies suggest that insulin or RSV may have clinical potential in the prevention of restenosis after angioplasty.Ph

    Resveratrol Prevents Insulin Resistance Caused by Short-Term Elevation of Free Fatty Acids In Vivo

    No full text
    Elevated levels of plasma free fatty acids (FFA), which are commonly found in obesity, induce insulin resistance. FFA activate protein kinases including the proinflammatory IÎșBα kinase ÎČ (IKKÎČ), leading to serine phosphorylation of insulin receptor substrate 1 (IRS-1) and impaired insulin signaling. In order to test whether resveratrol, a polyphenol found in red wine, prevents FFA-induced insulin resistance, we used a hyperinsulinemic-euglycemic clamp with tracer to assess hepatic and peripheral insulin sensitivity in overnight-fasted Wistar rats infused for 7 hours with either saline, Intralipid plus 20 U/ml heparin (IH, triglyceride emulsion that elevates FFA levels in vivo; 5.5 l/min) with or without resveratrol (3mg kg-1 h-1), or resveratrol alone. Infusion of IH significantly decreased glucose infusion rate (GIR; PThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Pharmacological inhibition of IRAK4 kinase activity does not prevent cachexia in mice with pancreatic cancer

    No full text
    Abstract Background Inflammation is a hallmark of cachexia; however, effective anti‐inflammatory treatments have not yet been identified. Interleukin‐1 receptor‐associated kinase 4 (IRAK4) is a key signalling node linking interleukin‐1 receptor (IL‐1R) and toll‐like receptor (TLR) activation to the production of multiple proinflammatory cytokines that are elevated in cancer cachexia. The purpose of this work is to evaluate whether pharmacological inhibition of IRAK4 kinase activity with PF‐06426779 could prevent cachexia using a model of pancreatic cancer. The effect of appetite stimulation via the ghrelin receptor agonist anamorelin was also examined as a benchmark of clinically validated mechanisms. Methods Female C57Bl/6J mice were given an intraperitoneal injection of KrasG12D; p53R172H; Pdx1‐Cre (KPC) pancreatic tumour cells. PF‐06426779 or anamorelin treatment was initiated at the onset of anorexia. Body weight and food intake were measured throughout the study. Body composition, muscle function (force), and physical activity (treadmill running endurance) were assessed at the end of the study. Results Chronic treatment with PF‐06426779, at doses covering in vitro IC50 and IC90 at Cmin, did not increase body weight, food intake, and muscle function in the KPC tumour model. In contrast, anamorelin (vs. vehicle) increased food intake (P < 0.01), hindlimb skeletal muscle mass (P < 0.01), and muscle strength (P < 0.05); however, treadmill running endurance was not increased. Conclusions These data suggest that inhibition of IRAK4 kinase activity is not sufficient to treat cachexia, at least in pancreatic cancer, and exploration of alternative anti‐inflammatory strategies that increase appetite is required

    Phase 2 study of the efficacy and safety of ponsegromab in patients with cancer cachexia: PROACC‐1 study design

    No full text
    Abstract Background Cancer cachexia is a multifactorial metabolic wasting syndrome characterized by anorexia, unintentional loss of weight involving both skeletal muscle and adipose tissues, progressive functional impairment and reduced survival. Therapeutic strategies for this serious condition are very limited. Growth differentiation factor 15 (GDF‐15) is a cytokine that is implicated in cancer cachexia and may represent both a biomarker of cancer cachexia and a potential therapeutic target. Ponsegromab is a potent and selective humanized monoclonal antibody that inhibits GDF‐15‐mediated signalling. Preclinical and preliminary phase 1 data suggest that ponsegromab‐mediated inactivation of circulating GDF‐15 may lead to improvement in key characteristics of cachexia. The primary objective of this phase 2 study is to assess the effect of ponsegromab on body weight in patients with cancer, cachexia and elevated GDF‐15 concentrations. Secondary objectives include assessing physical activity, physical function, actigraphy, appetite, nausea and vomiting, fatigue and safety. Exploratory objectives include evaluating pharmacokinetics, pharmacodynamics, immunogenicity, lumbar skeletal muscle index and Response Evaluation Criteria in Solid Tumors. Methods Approximately 168 adults with non‐small‐cell lung, pancreatic or colorectal cancers who have cachexia and elevated GDF‐15 concentrations will be randomized in a double‐blind, placebo‐controlled study (NCT05546476). Participants meeting eligibility criteria will be randomized 1:1:1:1 to one of three dose groups of ponsegromab (100, 200 or 400 mg) or matching placebo administered subcutaneously every 4 weeks for an initial 12‐week treatment period. This is followed by optional open‐label treatment with ponsegromab of 400 mg administered every 4 weeks for up to 1 year. The primary endpoint is mean change from baseline in body weight at Week 12. A mixed model for repeated measures followed by a Bayesian Emax model will be used for the primary analysis. Secondary endpoints include physical activity, physical function and actigraphy measured by remote digital sensors; patient‐reported appetite‐related symptoms assessed by Functional Assessment of Anorexia‐Cachexia Therapy subscale scores; anorexia/appetite, nausea and vomiting, and fatigue evaluated according to questions from the Cancer‐Related Cachexia Symptom Diary; and incidence of adverse events, safety laboratory tests, vital signs and electrocardiogram abnormalities. Perspective Cancer‐related cachexia is an area of significant unmet medical need. This study will support the clinical development of ponsegromab as a novel inhibitor of GDF‐15, which may ameliorate key pathologies of cancer cachexia to improve patient symptoms, functionality and quality of life. Trial registration ClinicalTrials.gov ID: NCT05546476

    Resveratrol Inhibits Neointimal Growth after Arterial Injury in High-Fat-Fed Rodents: The Roles of SIRT1 and AMPK

    No full text
    We have shown that both insulin and resveratrol (RSV) decrease neointimal hyperplasia in chow-fed rodents via mechanisms that are in part overlapping and involve the activation of endothelial nitric oxide synthase (eNOS). However, this vasculoprotective effect of insulin is abolished in high-fat-fed insulin-resistant rats. Since RSV, in addition to increasing insulin sensitivity, can activate eNOS via pathways that are independent of insulin signaling, such as the activation of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), we speculated that unlike insulin, the vasculoprotective effect of RSV would be retained in high-fat-fed rats. We found that high-fat feeding decreased insulin sensitivity and increased neointimal area and that RSV improved insulin sensitivity (p < 0.05) and decreased neointimal area in high-fat-fed rats (p < 0.05). We investigated the role of SIRT1 in the effect of RSV using two genetic mouse models. We found that RSV decreased neointimal area in high-fat-fed wild-type mice (p < 0.05), an effect that was retained in mice with catalytically inactive SIRT1 (p < 0.05) and in heterozygous SIRT1-null mice. In contrast, the effect of RSV was abolished in AMKPα2-null mice. Thus, RSV decreased neointimal hyperplasia after arterial injury in both high-fat-fed rats and mice, an effect likely not mediated by SIRT1 but by AMPKα2.Funding provided by grants to A.G. from the Heart and Stroke Foundation of Canada (Grants #T-7342, #G-13-0001610, and G-18-0022151). J.G. and D.M.B. were supported by Banting and Best Diabetes Centre/Novo Nordisk Studentships, Heart & Stroke Foundation of Ontario Graduate Scholarships, Ontario Graduate Scholarships, and Canadian Diabetes Association Doctoral Stu- dent Research Awards. J.G. was also a member of the Cardiovas- cular Sciences Collaborative Programs. Y.M. was supported by Showa University Research Grant for Young Researchers
    corecore