848 research outputs found

    Construction and analysis of causally dynamic hybrid bond graphs

    Get PDF
    Engineering systems are frequently abstracted to models with discontinuous behaviour (such as a switch or contact), and a hybrid model is one which contains continuous and discontinuous behaviours. Bond graphs are an established physical modelling method, but there are several methods for constructing switched or ‘hybrid’ bond graphs, developed for either qualitative ‘structural’ analysis or efficient numerical simulation of engineering systems. This article proposes a general hybrid bond graph suitable for both. The controlled junction is adopted as an intuitive way of modelling a discontinuity in the model structure. This element gives rise to ‘dynamic causality’ that is facilitated by a new bond graph notation. From this model, the junction structure and state equations are derived and compared to those obtained by existing methods. The proposed model includes all possible modes of operation and can be represented by a single set of equations. The controlled junctions manifest as Boolean variables in the matrices of coefficients. The method is more compact and intuitive than existing methods and dispenses with the need to derive various modes of operation from a given reference representation. Hence, a method has been developed, which can reach common usage and form a platform for further study

    Changes in disease characteristics and response rates among patients in the United Kingdom starting anti-tumour necrosis factor therapy for rheumatoid arthritis between 2001 and 2008

    Get PDF
    Objectives. Anti-TNF therapy has significantly improved outcomes for patients with severe RA. In the UK, changing financial restrictions and increasing experience with their use may have resulted in changes to the way physicians use anti-TNF therapies. The aim of this analysis was to examine changes in disease characteristics and response rates among patients starting anti-TNF therapy for RA over an 8-year period

    Self-diffusion in dense granular shear flows

    Full text link
    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear in a 2D Couette geometry. We find that self-diffusivities are proportional to the local shear rate with diffusivities along the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D \approx \dot\gamma a^2 where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and drag at the moving boundary lead to particle displacements that can appear sub- or super-diffusive. In particular, diffusion appears superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems with no obvious analog in rapid flows. Specifically, the diffusivity is supressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean flow, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Levy flights are also observed. Although correlated motion creates velocity fields qualitatively different from Brownian motion and can introduce non-diffusive effects, on average the system appears simply diffusive.Comment: 13 pages, 20 figures (accepted to Phys. Rev. E
    corecore